lfs_emubd.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739
  1. /*
  2. * Emulating block device, wraps filebd and rambd while providing a bunch
  3. * of hooks for testing littlefs in various conditions.
  4. *
  5. * Copyright (c) 2022, The littlefs authors.
  6. * Copyright (c) 2017, Arm Limited. All rights reserved.
  7. * SPDX-License-Identifier: BSD-3-Clause
  8. */
  9. #ifndef _POSIX_C_SOURCE
  10. #define _POSIX_C_SOURCE 199309L
  11. #endif
  12. #include "bd/lfs_emubd.h"
  13. #include <stdlib.h>
  14. #include <fcntl.h>
  15. #include <unistd.h>
  16. #include <errno.h>
  17. #include <time.h>
  18. #ifdef _WIN32
  19. #include <windows.h>
  20. #endif
  21. // access to lazily-allocated/copy-on-write blocks
  22. //
  23. // Note we can only modify a block if we have exclusive access to it (rc == 1)
  24. //
  25. static lfs_emubd_block_t *lfs_emubd_incblock(lfs_emubd_block_t *block) {
  26. if (block) {
  27. block->rc += 1;
  28. }
  29. return block;
  30. }
  31. static void lfs_emubd_decblock(lfs_emubd_block_t *block) {
  32. if (block) {
  33. block->rc -= 1;
  34. if (block->rc == 0) {
  35. free(block);
  36. }
  37. }
  38. }
  39. static lfs_emubd_block_t *lfs_emubd_mutblock(
  40. const struct lfs_config *cfg,
  41. lfs_emubd_block_t **block) {
  42. lfs_emubd_t *bd = cfg->context;
  43. lfs_emubd_block_t *block_ = *block;
  44. if (block_ && block_->rc == 1) {
  45. // rc == 1? can modify
  46. return block_;
  47. } else if (block_) {
  48. // rc > 1? need to create a copy
  49. lfs_emubd_block_t *nblock = malloc(
  50. sizeof(lfs_emubd_block_t) + bd->cfg->erase_size);
  51. if (!nblock) {
  52. return NULL;
  53. }
  54. memcpy(nblock, block_,
  55. sizeof(lfs_emubd_block_t) + bd->cfg->erase_size);
  56. nblock->rc = 1;
  57. lfs_emubd_decblock(block_);
  58. *block = nblock;
  59. return nblock;
  60. } else {
  61. // no block? need to allocate
  62. lfs_emubd_block_t *nblock = malloc(
  63. sizeof(lfs_emubd_block_t) + bd->cfg->erase_size);
  64. if (!nblock) {
  65. return NULL;
  66. }
  67. nblock->rc = 1;
  68. nblock->wear = 0;
  69. // zero for consistency
  70. memset(nblock->data,
  71. (bd->cfg->erase_value != -1) ? bd->cfg->erase_value : 0,
  72. bd->cfg->erase_size);
  73. *block = nblock;
  74. return nblock;
  75. }
  76. }
  77. // emubd create/destroy
  78. int lfs_emubd_create(const struct lfs_config *cfg,
  79. const struct lfs_emubd_config *bdcfg) {
  80. LFS_EMUBD_TRACE("lfs_emubd_create(%p {.context=%p, "
  81. ".read=%p, .prog=%p, .erase=%p, .sync=%p}, "
  82. "%p {.read_size=%"PRIu32", .prog_size=%"PRIu32", "
  83. ".erase_size=%"PRIu32", .erase_count=%"PRIu32", "
  84. ".erase_value=%"PRId32", .erase_cycles=%"PRIu32", "
  85. ".badblock_behavior=%"PRIu8", .power_cycles=%"PRIu32", "
  86. ".powerloss_behavior=%"PRIu8", .powerloss_cb=%p, "
  87. ".powerloss_data=%p, .track_branches=%d})",
  88. (void*)cfg, cfg->context,
  89. (void*)(uintptr_t)cfg->read, (void*)(uintptr_t)cfg->prog,
  90. (void*)(uintptr_t)cfg->erase, (void*)(uintptr_t)cfg->sync,
  91. (void*)bdcfg,
  92. bdcfg->read_size, bdcfg->prog_size, bdcfg->erase_size,
  93. bdcfg->erase_count, bdcfg->erase_value, bdcfg->erase_cycles,
  94. bdcfg->badblock_behavior, bdcfg->power_cycles,
  95. bdcfg->powerloss_behavior, (void*)(uintptr_t)bdcfg->powerloss_cb,
  96. bdcfg->powerloss_data, bdcfg->track_branches);
  97. lfs_emubd_t *bd = cfg->context;
  98. bd->cfg = bdcfg;
  99. // allocate our block array, all blocks start as uninitialized
  100. bd->blocks = malloc(bd->cfg->erase_count * sizeof(lfs_emubd_block_t*));
  101. if (!bd->blocks) {
  102. LFS_EMUBD_TRACE("lfs_emubd_create -> %d", LFS_ERR_NOMEM);
  103. return LFS_ERR_NOMEM;
  104. }
  105. memset(bd->blocks, 0, bd->cfg->erase_count * sizeof(lfs_emubd_block_t*));
  106. // setup testing things
  107. bd->readed = 0;
  108. bd->proged = 0;
  109. bd->erased = 0;
  110. bd->power_cycles = bd->cfg->power_cycles;
  111. bd->ooo_block = -1;
  112. bd->ooo_data = NULL;
  113. bd->disk = NULL;
  114. if (bd->cfg->disk_path) {
  115. bd->disk = malloc(sizeof(lfs_emubd_disk_t));
  116. if (!bd->disk) {
  117. LFS_EMUBD_TRACE("lfs_emubd_create -> %d", LFS_ERR_NOMEM);
  118. return LFS_ERR_NOMEM;
  119. }
  120. bd->disk->rc = 1;
  121. bd->disk->scratch = NULL;
  122. #ifdef _WIN32
  123. bd->disk->fd = open(bd->cfg->disk_path,
  124. O_RDWR | O_CREAT | O_BINARY, 0666);
  125. #else
  126. bd->disk->fd = open(bd->cfg->disk_path,
  127. O_RDWR | O_CREAT, 0666);
  128. #endif
  129. if (bd->disk->fd < 0) {
  130. int err = -errno;
  131. LFS_EMUBD_TRACE("lfs_emubd_create -> %d", err);
  132. return err;
  133. }
  134. // if we're emulating erase values, we can keep a block around in
  135. // memory of just the erase state to speed up emulated erases
  136. if (bd->cfg->erase_value != -1) {
  137. bd->disk->scratch = malloc(bd->cfg->erase_size);
  138. if (!bd->disk->scratch) {
  139. LFS_EMUBD_TRACE("lfs_emubd_create -> %d", LFS_ERR_NOMEM);
  140. return LFS_ERR_NOMEM;
  141. }
  142. memset(bd->disk->scratch,
  143. bd->cfg->erase_value,
  144. bd->cfg->erase_size);
  145. // go ahead and erase all of the disk, otherwise the file will not
  146. // match our internal representation
  147. for (size_t i = 0; i < bd->cfg->erase_count; i++) {
  148. ssize_t res = write(bd->disk->fd,
  149. bd->disk->scratch,
  150. bd->cfg->erase_size);
  151. if (res < 0) {
  152. int err = -errno;
  153. LFS_EMUBD_TRACE("lfs_emubd_create -> %d", err);
  154. return err;
  155. }
  156. }
  157. }
  158. }
  159. LFS_EMUBD_TRACE("lfs_emubd_create -> %d", 0);
  160. return 0;
  161. }
  162. int lfs_emubd_destroy(const struct lfs_config *cfg) {
  163. LFS_EMUBD_TRACE("lfs_emubd_destroy(%p)", (void*)cfg);
  164. lfs_emubd_t *bd = cfg->context;
  165. // decrement reference counts
  166. for (lfs_block_t i = 0; i < bd->cfg->erase_count; i++) {
  167. lfs_emubd_decblock(bd->blocks[i]);
  168. }
  169. free(bd->blocks);
  170. // clean up other resources
  171. lfs_emubd_decblock(bd->ooo_data);
  172. if (bd->disk) {
  173. bd->disk->rc -= 1;
  174. if (bd->disk->rc == 0) {
  175. close(bd->disk->fd);
  176. free(bd->disk->scratch);
  177. free(bd->disk);
  178. }
  179. }
  180. LFS_EMUBD_TRACE("lfs_emubd_destroy -> %d", 0);
  181. return 0;
  182. }
  183. // powerloss hook
  184. static int lfs_emubd_powerloss(const struct lfs_config *cfg) {
  185. lfs_emubd_t *bd = cfg->context;
  186. // emulate out-of-order writes?
  187. lfs_emubd_block_t *ooo_data = NULL;
  188. if (bd->cfg->powerloss_behavior == LFS_EMUBD_POWERLOSS_OOO
  189. && bd->ooo_block != -1) {
  190. // since writes between syncs are allowed to be out-of-order, it
  191. // shouldn't hurt to restore the first write on powerloss, right?
  192. ooo_data = bd->blocks[bd->ooo_block];
  193. bd->blocks[bd->ooo_block] = lfs_emubd_incblock(bd->ooo_data);
  194. // mirror to disk file?
  195. if (bd->disk
  196. && (bd->blocks[bd->ooo_block]
  197. || bd->cfg->erase_value != -1)) {
  198. off_t res1 = lseek(bd->disk->fd,
  199. (off_t)bd->ooo_block*bd->cfg->erase_size,
  200. SEEK_SET);
  201. if (res1 < 0) {
  202. return -errno;
  203. }
  204. ssize_t res2 = write(bd->disk->fd,
  205. (bd->blocks[bd->ooo_block])
  206. ? bd->blocks[bd->ooo_block]->data
  207. : bd->disk->scratch,
  208. bd->cfg->erase_size);
  209. if (res2 < 0) {
  210. return -errno;
  211. }
  212. }
  213. }
  214. // simulate power loss
  215. bd->cfg->powerloss_cb(bd->cfg->powerloss_data);
  216. // if we continue, undo out-of-order write emulation
  217. if (bd->cfg->powerloss_behavior == LFS_EMUBD_POWERLOSS_OOO
  218. && bd->ooo_block != -1) {
  219. lfs_emubd_decblock(bd->blocks[bd->ooo_block]);
  220. bd->blocks[bd->ooo_block] = ooo_data;
  221. // mirror to disk file?
  222. if (bd->disk
  223. && (bd->blocks[bd->ooo_block]
  224. || bd->cfg->erase_value != -1)) {
  225. off_t res1 = lseek(bd->disk->fd,
  226. (off_t)bd->ooo_block*bd->cfg->erase_size,
  227. SEEK_SET);
  228. if (res1 < 0) {
  229. return -errno;
  230. }
  231. ssize_t res2 = write(bd->disk->fd,
  232. (bd->blocks[bd->ooo_block])
  233. ? bd->blocks[bd->ooo_block]->data
  234. : bd->disk->scratch,
  235. bd->cfg->erase_size);
  236. if (res2 < 0) {
  237. return -errno;
  238. }
  239. }
  240. }
  241. return 0;
  242. }
  243. // block device API
  244. int lfs_emubd_read(const struct lfs_config *cfg, lfs_block_t block,
  245. lfs_off_t off, void *buffer, lfs_size_t size) {
  246. LFS_EMUBD_TRACE("lfs_emubd_read(%p, "
  247. "0x%"PRIx32", %"PRIu32", %p, %"PRIu32")",
  248. (void*)cfg, block, off, buffer, size);
  249. lfs_emubd_t *bd = cfg->context;
  250. // check if read is valid
  251. LFS_ASSERT(block < bd->cfg->erase_count);
  252. LFS_ASSERT(off % bd->cfg->read_size == 0);
  253. LFS_ASSERT(size % bd->cfg->read_size == 0);
  254. LFS_ASSERT(off+size <= bd->cfg->erase_size);
  255. // get the block
  256. const lfs_emubd_block_t *b = bd->blocks[block];
  257. if (b) {
  258. // block bad?
  259. if (bd->cfg->erase_cycles && b->wear >= bd->cfg->erase_cycles &&
  260. bd->cfg->badblock_behavior == LFS_EMUBD_BADBLOCK_READERROR) {
  261. LFS_EMUBD_TRACE("lfs_emubd_read -> %d", LFS_ERR_CORRUPT);
  262. return LFS_ERR_CORRUPT;
  263. }
  264. // read data
  265. memcpy(buffer, &b->data[off], size);
  266. } else {
  267. // zero for consistency
  268. memset(buffer,
  269. (bd->cfg->erase_value != -1) ? bd->cfg->erase_value : 0,
  270. size);
  271. }
  272. // track reads
  273. bd->readed += size;
  274. if (bd->cfg->read_sleep) {
  275. int err = nanosleep(&(struct timespec){
  276. .tv_sec=bd->cfg->read_sleep/1000000000,
  277. .tv_nsec=bd->cfg->read_sleep%1000000000},
  278. NULL);
  279. if (err) {
  280. err = -errno;
  281. LFS_EMUBD_TRACE("lfs_emubd_read -> %d", err);
  282. return err;
  283. }
  284. }
  285. LFS_EMUBD_TRACE("lfs_emubd_read -> %d", 0);
  286. return 0;
  287. }
  288. int lfs_emubd_prog(const struct lfs_config *cfg, lfs_block_t block,
  289. lfs_off_t off, const void *buffer, lfs_size_t size) {
  290. LFS_EMUBD_TRACE("lfs_emubd_prog(%p, "
  291. "0x%"PRIx32", %"PRIu32", %p, %"PRIu32")",
  292. (void*)cfg, block, off, buffer, size);
  293. lfs_emubd_t *bd = cfg->context;
  294. // check if write is valid
  295. LFS_ASSERT(block < bd->cfg->erase_count);
  296. LFS_ASSERT(off % bd->cfg->prog_size == 0);
  297. LFS_ASSERT(size % bd->cfg->prog_size == 0);
  298. LFS_ASSERT(off+size <= bd->cfg->erase_size);
  299. // get the block
  300. lfs_emubd_block_t *b = lfs_emubd_mutblock(cfg, &bd->blocks[block]);
  301. if (!b) {
  302. LFS_EMUBD_TRACE("lfs_emubd_prog -> %d", LFS_ERR_NOMEM);
  303. return LFS_ERR_NOMEM;
  304. }
  305. // block bad?
  306. if (bd->cfg->erase_cycles && b->wear >= bd->cfg->erase_cycles) {
  307. if (bd->cfg->badblock_behavior ==
  308. LFS_EMUBD_BADBLOCK_PROGERROR) {
  309. LFS_EMUBD_TRACE("lfs_emubd_prog -> %d", LFS_ERR_CORRUPT);
  310. return LFS_ERR_CORRUPT;
  311. } else if (bd->cfg->badblock_behavior ==
  312. LFS_EMUBD_BADBLOCK_PROGNOOP ||
  313. bd->cfg->badblock_behavior ==
  314. LFS_EMUBD_BADBLOCK_ERASENOOP) {
  315. LFS_EMUBD_TRACE("lfs_emubd_prog -> %d", 0);
  316. return 0;
  317. }
  318. }
  319. // were we erased properly?
  320. if (bd->cfg->erase_value != -1) {
  321. for (lfs_off_t i = 0; i < size; i++) {
  322. LFS_ASSERT(b->data[off+i] == bd->cfg->erase_value);
  323. }
  324. }
  325. // prog data
  326. memcpy(&b->data[off], buffer, size);
  327. // mirror to disk file?
  328. if (bd->disk) {
  329. off_t res1 = lseek(bd->disk->fd,
  330. (off_t)block*bd->cfg->erase_size + (off_t)off,
  331. SEEK_SET);
  332. if (res1 < 0) {
  333. int err = -errno;
  334. LFS_EMUBD_TRACE("lfs_emubd_prog -> %d", err);
  335. return err;
  336. }
  337. ssize_t res2 = write(bd->disk->fd, buffer, size);
  338. if (res2 < 0) {
  339. int err = -errno;
  340. LFS_EMUBD_TRACE("lfs_emubd_prog -> %d", err);
  341. return err;
  342. }
  343. }
  344. // track progs
  345. bd->proged += size;
  346. if (bd->cfg->prog_sleep) {
  347. int err = nanosleep(&(struct timespec){
  348. .tv_sec=bd->cfg->prog_sleep/1000000000,
  349. .tv_nsec=bd->cfg->prog_sleep%1000000000},
  350. NULL);
  351. if (err) {
  352. err = -errno;
  353. LFS_EMUBD_TRACE("lfs_emubd_prog -> %d", err);
  354. return err;
  355. }
  356. }
  357. // lose power?
  358. if (bd->power_cycles > 0) {
  359. bd->power_cycles -= 1;
  360. if (bd->power_cycles == 0) {
  361. int err = lfs_emubd_powerloss(cfg);
  362. if (err) {
  363. LFS_EMUBD_TRACE("lfs_emubd_prog -> %d", err);
  364. return err;
  365. }
  366. }
  367. }
  368. LFS_EMUBD_TRACE("lfs_emubd_prog -> %d", 0);
  369. return 0;
  370. }
  371. int lfs_emubd_erase(const struct lfs_config *cfg, lfs_block_t block) {
  372. LFS_EMUBD_TRACE("lfs_emubd_erase(%p, 0x%"PRIx32" (%"PRIu32"))",
  373. (void*)cfg, block, ((lfs_emubd_t*)cfg->context)->cfg->erase_size);
  374. lfs_emubd_t *bd = cfg->context;
  375. // check if erase is valid
  376. LFS_ASSERT(block < bd->cfg->erase_count);
  377. // emulate out-of-order writes? save first write
  378. if (bd->cfg->powerloss_behavior == LFS_EMUBD_POWERLOSS_OOO
  379. && bd->ooo_block == -1) {
  380. bd->ooo_block = block;
  381. bd->ooo_data = lfs_emubd_incblock(bd->blocks[block]);
  382. }
  383. // get the block
  384. lfs_emubd_block_t *b = lfs_emubd_mutblock(cfg, &bd->blocks[block]);
  385. if (!b) {
  386. LFS_EMUBD_TRACE("lfs_emubd_erase -> %d", LFS_ERR_NOMEM);
  387. return LFS_ERR_NOMEM;
  388. }
  389. // block bad?
  390. if (bd->cfg->erase_cycles) {
  391. if (b->wear >= bd->cfg->erase_cycles) {
  392. if (bd->cfg->badblock_behavior ==
  393. LFS_EMUBD_BADBLOCK_ERASEERROR) {
  394. LFS_EMUBD_TRACE("lfs_emubd_erase -> %d", LFS_ERR_CORRUPT);
  395. return LFS_ERR_CORRUPT;
  396. } else if (bd->cfg->badblock_behavior ==
  397. LFS_EMUBD_BADBLOCK_ERASENOOP) {
  398. LFS_EMUBD_TRACE("lfs_emubd_erase -> %d", 0);
  399. return 0;
  400. }
  401. } else {
  402. // mark wear
  403. b->wear += 1;
  404. }
  405. }
  406. // emulate an erase value?
  407. if (bd->cfg->erase_value != -1) {
  408. memset(b->data, bd->cfg->erase_value, bd->cfg->erase_size);
  409. // mirror to disk file?
  410. if (bd->disk) {
  411. off_t res1 = lseek(bd->disk->fd,
  412. (off_t)block*bd->cfg->erase_size,
  413. SEEK_SET);
  414. if (res1 < 0) {
  415. int err = -errno;
  416. LFS_EMUBD_TRACE("lfs_emubd_erase -> %d", err);
  417. return err;
  418. }
  419. ssize_t res2 = write(bd->disk->fd,
  420. bd->disk->scratch,
  421. bd->cfg->erase_size);
  422. if (res2 < 0) {
  423. int err = -errno;
  424. LFS_EMUBD_TRACE("lfs_emubd_erase -> %d", err);
  425. return err;
  426. }
  427. }
  428. }
  429. // track erases
  430. bd->erased += bd->cfg->erase_size;
  431. if (bd->cfg->erase_sleep) {
  432. int err = nanosleep(&(struct timespec){
  433. .tv_sec=bd->cfg->erase_sleep/1000000000,
  434. .tv_nsec=bd->cfg->erase_sleep%1000000000},
  435. NULL);
  436. if (err) {
  437. err = -errno;
  438. LFS_EMUBD_TRACE("lfs_emubd_erase -> %d", err);
  439. return err;
  440. }
  441. }
  442. // lose power?
  443. if (bd->power_cycles > 0) {
  444. bd->power_cycles -= 1;
  445. if (bd->power_cycles == 0) {
  446. int err = lfs_emubd_powerloss(cfg);
  447. if (err) {
  448. LFS_EMUBD_TRACE("lfs_emubd_erase -> %d", err);
  449. return err;
  450. }
  451. }
  452. }
  453. LFS_EMUBD_TRACE("lfs_emubd_erase -> %d", 0);
  454. return 0;
  455. }
  456. int lfs_emubd_sync(const struct lfs_config *cfg) {
  457. LFS_EMUBD_TRACE("lfs_emubd_sync(%p)", (void*)cfg);
  458. lfs_emubd_t *bd = cfg->context;
  459. // emulate out-of-order writes? reset first write, writes
  460. // cannot be out-of-order across sync
  461. if (bd->cfg->powerloss_behavior == LFS_EMUBD_POWERLOSS_OOO) {
  462. lfs_emubd_decblock(bd->ooo_data);
  463. bd->ooo_block = -1;
  464. bd->ooo_data = NULL;
  465. }
  466. LFS_EMUBD_TRACE("lfs_emubd_sync -> %d", 0);
  467. return 0;
  468. }
  469. /// Additional extended API for driving test features ///
  470. static int lfs_emubd_crc_(const struct lfs_config *cfg,
  471. lfs_block_t block, uint32_t *crc) {
  472. lfs_emubd_t *bd = cfg->context;
  473. // check if crc is valid
  474. LFS_ASSERT(block < cfg->block_count);
  475. // crc the block
  476. uint32_t crc_ = 0xffffffff;
  477. const lfs_emubd_block_t *b = bd->blocks[block];
  478. if (b) {
  479. crc_ = lfs_crc(crc_, b->data, cfg->block_size);
  480. } else {
  481. uint8_t erase_value = (bd->cfg->erase_value != -1)
  482. ? bd->cfg->erase_value
  483. : 0;
  484. for (lfs_size_t i = 0; i < cfg->block_size; i++) {
  485. crc_ = lfs_crc(crc_, &erase_value, 1);
  486. }
  487. }
  488. *crc = 0xffffffff ^ crc_;
  489. return 0;
  490. }
  491. int lfs_emubd_crc(const struct lfs_config *cfg,
  492. lfs_block_t block, uint32_t *crc) {
  493. LFS_EMUBD_TRACE("lfs_emubd_crc(%p, %"PRIu32", %p)",
  494. (void*)cfg, block, crc);
  495. int err = lfs_emubd_crc_(cfg, block, crc);
  496. LFS_EMUBD_TRACE("lfs_emubd_crc -> %d", err);
  497. return err;
  498. }
  499. int lfs_emubd_bdcrc(const struct lfs_config *cfg, uint32_t *crc) {
  500. LFS_EMUBD_TRACE("lfs_emubd_bdcrc(%p, %p)", (void*)cfg, crc);
  501. uint32_t crc_ = 0xffffffff;
  502. for (lfs_block_t i = 0; i < cfg->block_count; i++) {
  503. uint32_t i_crc;
  504. int err = lfs_emubd_crc_(cfg, i, &i_crc);
  505. if (err) {
  506. LFS_EMUBD_TRACE("lfs_emubd_bdcrc -> %d", err);
  507. return err;
  508. }
  509. crc_ = lfs_crc(crc_, &i_crc, sizeof(uint32_t));
  510. }
  511. *crc = 0xffffffff ^ crc_;
  512. LFS_EMUBD_TRACE("lfs_emubd_bdcrc -> %d", 0);
  513. return 0;
  514. }
  515. lfs_emubd_sio_t lfs_emubd_readed(const struct lfs_config *cfg) {
  516. LFS_EMUBD_TRACE("lfs_emubd_readed(%p)", (void*)cfg);
  517. lfs_emubd_t *bd = cfg->context;
  518. LFS_EMUBD_TRACE("lfs_emubd_readed -> %"PRIu64, bd->readed);
  519. return bd->readed;
  520. }
  521. lfs_emubd_sio_t lfs_emubd_proged(const struct lfs_config *cfg) {
  522. LFS_EMUBD_TRACE("lfs_emubd_proged(%p)", (void*)cfg);
  523. lfs_emubd_t *bd = cfg->context;
  524. LFS_EMUBD_TRACE("lfs_emubd_proged -> %"PRIu64, bd->proged);
  525. return bd->proged;
  526. }
  527. lfs_emubd_sio_t lfs_emubd_erased(const struct lfs_config *cfg) {
  528. LFS_EMUBD_TRACE("lfs_emubd_erased(%p)", (void*)cfg);
  529. lfs_emubd_t *bd = cfg->context;
  530. LFS_EMUBD_TRACE("lfs_emubd_erased -> %"PRIu64, bd->erased);
  531. return bd->erased;
  532. }
  533. int lfs_emubd_setreaded(const struct lfs_config *cfg, lfs_emubd_io_t readed) {
  534. LFS_EMUBD_TRACE("lfs_emubd_setreaded(%p, %"PRIu64")", (void*)cfg, readed);
  535. lfs_emubd_t *bd = cfg->context;
  536. bd->readed = readed;
  537. LFS_EMUBD_TRACE("lfs_emubd_setreaded -> %d", 0);
  538. return 0;
  539. }
  540. int lfs_emubd_setproged(const struct lfs_config *cfg, lfs_emubd_io_t proged) {
  541. LFS_EMUBD_TRACE("lfs_emubd_setproged(%p, %"PRIu64")", (void*)cfg, proged);
  542. lfs_emubd_t *bd = cfg->context;
  543. bd->proged = proged;
  544. LFS_EMUBD_TRACE("lfs_emubd_setproged -> %d", 0);
  545. return 0;
  546. }
  547. int lfs_emubd_seterased(const struct lfs_config *cfg, lfs_emubd_io_t erased) {
  548. LFS_EMUBD_TRACE("lfs_emubd_seterased(%p, %"PRIu64")", (void*)cfg, erased);
  549. lfs_emubd_t *bd = cfg->context;
  550. bd->erased = erased;
  551. LFS_EMUBD_TRACE("lfs_emubd_seterased -> %d", 0);
  552. return 0;
  553. }
  554. lfs_emubd_swear_t lfs_emubd_wear(const struct lfs_config *cfg,
  555. lfs_block_t block) {
  556. LFS_EMUBD_TRACE("lfs_emubd_wear(%p, %"PRIu32")", (void*)cfg, block);
  557. lfs_emubd_t *bd = cfg->context;
  558. // check if block is valid
  559. LFS_ASSERT(block < bd->cfg->erase_count);
  560. // get the wear
  561. lfs_emubd_wear_t wear;
  562. const lfs_emubd_block_t *b = bd->blocks[block];
  563. if (b) {
  564. wear = b->wear;
  565. } else {
  566. wear = 0;
  567. }
  568. LFS_EMUBD_TRACE("lfs_emubd_wear -> %"PRIi32, wear);
  569. return wear;
  570. }
  571. int lfs_emubd_setwear(const struct lfs_config *cfg,
  572. lfs_block_t block, lfs_emubd_wear_t wear) {
  573. LFS_EMUBD_TRACE("lfs_emubd_setwear(%p, %"PRIu32", %"PRIi32")",
  574. (void*)cfg, block, wear);
  575. lfs_emubd_t *bd = cfg->context;
  576. // check if block is valid
  577. LFS_ASSERT(block < bd->cfg->erase_count);
  578. // set the wear
  579. lfs_emubd_block_t *b = lfs_emubd_mutblock(cfg, &bd->blocks[block]);
  580. if (!b) {
  581. LFS_EMUBD_TRACE("lfs_emubd_setwear -> %d", LFS_ERR_NOMEM);
  582. return LFS_ERR_NOMEM;
  583. }
  584. b->wear = wear;
  585. LFS_EMUBD_TRACE("lfs_emubd_setwear -> %d", 0);
  586. return 0;
  587. }
  588. lfs_emubd_spowercycles_t lfs_emubd_powercycles(
  589. const struct lfs_config *cfg) {
  590. LFS_EMUBD_TRACE("lfs_emubd_powercycles(%p)", (void*)cfg);
  591. lfs_emubd_t *bd = cfg->context;
  592. LFS_EMUBD_TRACE("lfs_emubd_powercycles -> %"PRIi32, bd->power_cycles);
  593. return bd->power_cycles;
  594. }
  595. int lfs_emubd_setpowercycles(const struct lfs_config *cfg,
  596. lfs_emubd_powercycles_t power_cycles) {
  597. LFS_EMUBD_TRACE("lfs_emubd_setpowercycles(%p, %"PRIi32")",
  598. (void*)cfg, power_cycles);
  599. lfs_emubd_t *bd = cfg->context;
  600. bd->power_cycles = power_cycles;
  601. LFS_EMUBD_TRACE("lfs_emubd_powercycles -> %d", 0);
  602. return 0;
  603. }
  604. int lfs_emubd_copy(const struct lfs_config *cfg, lfs_emubd_t *copy) {
  605. LFS_EMUBD_TRACE("lfs_emubd_copy(%p, %p)", (void*)cfg, (void*)copy);
  606. lfs_emubd_t *bd = cfg->context;
  607. // lazily copy over our block array
  608. copy->blocks = malloc(bd->cfg->erase_count * sizeof(lfs_emubd_block_t*));
  609. if (!copy->blocks) {
  610. LFS_EMUBD_TRACE("lfs_emubd_copy -> %d", LFS_ERR_NOMEM);
  611. return LFS_ERR_NOMEM;
  612. }
  613. for (size_t i = 0; i < bd->cfg->erase_count; i++) {
  614. copy->blocks[i] = lfs_emubd_incblock(bd->blocks[i]);
  615. }
  616. // other state
  617. copy->readed = bd->readed;
  618. copy->proged = bd->proged;
  619. copy->erased = bd->erased;
  620. copy->power_cycles = bd->power_cycles;
  621. copy->ooo_block = bd->ooo_block;
  622. copy->ooo_data = lfs_emubd_incblock(bd->ooo_data);
  623. copy->disk = bd->disk;
  624. if (copy->disk) {
  625. copy->disk->rc += 1;
  626. }
  627. copy->cfg = bd->cfg;
  628. LFS_EMUBD_TRACE("lfs_emubd_copy -> %d", 0);
  629. return 0;
  630. }