| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592 |
- #!/usr/bin/env python3
- #
- # Plot CSV files in terminal.
- #
- # Example:
- # ./scripts/plot.py bench.csv -xSIZE -ybench_read -W80 -H17
- #
- # Copyright (c) 2022, The littlefs authors.
- # SPDX-License-Identifier: BSD-3-Clause
- #
- import bisect
- import codecs
- import collections as co
- import csv
- import io
- import itertools as it
- import math as m
- import os
- import shlex
- import shutil
- import time
- try:
- import inotify_simple
- except ModuleNotFoundError:
- inotify_simple = None
- COLORS = [
- '1;34', # bold blue
- '1;31', # bold red
- '1;32', # bold green
- '1;35', # bold purple
- '1;33', # bold yellow
- '1;36', # bold cyan
- '34', # blue
- '31', # red
- '32', # green
- '35', # purple
- '33', # yellow
- '36', # cyan
- ]
- CHARS_DOTS = " .':"
- CHARS_BRAILLE = (
- '⠀⢀⡀⣀⠠⢠⡠⣠⠄⢄⡄⣄⠤⢤⡤⣤' '⠐⢐⡐⣐⠰⢰⡰⣰⠔⢔⡔⣔⠴⢴⡴⣴'
- '⠂⢂⡂⣂⠢⢢⡢⣢⠆⢆⡆⣆⠦⢦⡦⣦' '⠒⢒⡒⣒⠲⢲⡲⣲⠖⢖⡖⣖⠶⢶⡶⣶'
- '⠈⢈⡈⣈⠨⢨⡨⣨⠌⢌⡌⣌⠬⢬⡬⣬' '⠘⢘⡘⣘⠸⢸⡸⣸⠜⢜⡜⣜⠼⢼⡼⣼'
- '⠊⢊⡊⣊⠪⢪⡪⣪⠎⢎⡎⣎⠮⢮⡮⣮' '⠚⢚⡚⣚⠺⢺⡺⣺⠞⢞⡞⣞⠾⢾⡾⣾'
- '⠁⢁⡁⣁⠡⢡⡡⣡⠅⢅⡅⣅⠥⢥⡥⣥' '⠑⢑⡑⣑⠱⢱⡱⣱⠕⢕⡕⣕⠵⢵⡵⣵'
- '⠃⢃⡃⣃⠣⢣⡣⣣⠇⢇⡇⣇⠧⢧⡧⣧' '⠓⢓⡓⣓⠳⢳⡳⣳⠗⢗⡗⣗⠷⢷⡷⣷'
- '⠉⢉⡉⣉⠩⢩⡩⣩⠍⢍⡍⣍⠭⢭⡭⣭' '⠙⢙⡙⣙⠹⢹⡹⣹⠝⢝⡝⣝⠽⢽⡽⣽'
- '⠋⢋⡋⣋⠫⢫⡫⣫⠏⢏⡏⣏⠯⢯⡯⣯' '⠛⢛⡛⣛⠻⢻⡻⣻⠟⢟⡟⣟⠿⢿⡿⣿')
- CHARS_POINTS_AND_LINES = 'o'
- SI_PREFIXES = {
- 18: 'E',
- 15: 'P',
- 12: 'T',
- 9: 'G',
- 6: 'M',
- 3: 'K',
- 0: '',
- -3: 'm',
- -6: 'u',
- -9: 'n',
- -12: 'p',
- -15: 'f',
- -18: 'a',
- }
- SI2_PREFIXES = {
- 60: 'Ei',
- 50: 'Pi',
- 40: 'Ti',
- 30: 'Gi',
- 20: 'Mi',
- 10: 'Ki',
- 0: '',
- -10: 'mi',
- -20: 'ui',
- -30: 'ni',
- -40: 'pi',
- -50: 'fi',
- -60: 'ai',
- }
- # format a number to a strict character width using SI prefixes
- def si(x, w=4):
- if x == 0:
- return '0'
- # figure out prefix and scale
- #
- # note we adjust this so that 100K = .1M, which has more info
- # per character
- p = 3*int(m.log(abs(x)*10, 10**3))
- p = min(18, max(-18, p))
- # format with enough digits
- s = '%.*f' % (w, abs(x) / (10.0**p))
- s = s.lstrip('0')
- # truncate but only digits that follow the dot
- if '.' in s:
- s = s[:max(s.find('.'), w-(2 if x < 0 else 1))]
- s = s.rstrip('0')
- s = s.rstrip('.')
- return '%s%s%s' % ('-' if x < 0 else '', s, SI_PREFIXES[p])
- def si2(x, w=5):
- if x == 0:
- return '0'
- # figure out prefix and scale
- #
- # note we adjust this so that 128Ki = .1Mi, which has more info
- # per character
- p = 10*int(m.log(abs(x)*10, 2**10))
- p = min(30, max(-30, p))
- # format with enough digits
- s = '%.*f' % (w, abs(x) / (2.0**p))
- s = s.lstrip('0')
- # truncate but only digits that follow the dot
- if '.' in s:
- s = s[:max(s.find('.'), w-(3 if x < 0 else 2))]
- s = s.rstrip('0')
- s = s.rstrip('.')
- return '%s%s%s' % ('-' if x < 0 else '', s, SI2_PREFIXES[p])
- # parse escape strings
- def escape(s):
- return codecs.escape_decode(s.encode('utf8'))[0].decode('utf8')
- def openio(path, mode='r', buffering=-1):
- # allow '-' for stdin/stdout
- if path == '-':
- if mode == 'r':
- return os.fdopen(os.dup(sys.stdin.fileno()), mode, buffering)
- else:
- return os.fdopen(os.dup(sys.stdout.fileno()), mode, buffering)
- else:
- return open(path, mode, buffering)
- def inotifywait(paths):
- # wait for interesting events
- inotify = inotify_simple.INotify()
- flags = (inotify_simple.flags.ATTRIB
- | inotify_simple.flags.CREATE
- | inotify_simple.flags.DELETE
- | inotify_simple.flags.DELETE_SELF
- | inotify_simple.flags.MODIFY
- | inotify_simple.flags.MOVED_FROM
- | inotify_simple.flags.MOVED_TO
- | inotify_simple.flags.MOVE_SELF)
- # recurse into directories
- for path in paths:
- if os.path.isdir(path):
- for dir, _, files in os.walk(path):
- inotify.add_watch(dir, flags)
- for f in files:
- inotify.add_watch(os.path.join(dir, f), flags)
- else:
- inotify.add_watch(path, flags)
- # wait for event
- inotify.read()
- class LinesIO:
- def __init__(self, maxlen=None):
- self.maxlen = maxlen
- self.lines = co.deque(maxlen=maxlen)
- self.tail = io.StringIO()
- # trigger automatic sizing
- if maxlen == 0:
- self.resize(0)
- def write(self, s):
- # note using split here ensures the trailing string has no newline
- lines = s.split('\n')
- if len(lines) > 1 and self.tail.getvalue():
- self.tail.write(lines[0])
- lines[0] = self.tail.getvalue()
- self.tail = io.StringIO()
- self.lines.extend(lines[:-1])
- if lines[-1]:
- self.tail.write(lines[-1])
- def resize(self, maxlen):
- self.maxlen = maxlen
- if maxlen == 0:
- maxlen = shutil.get_terminal_size((80, 5))[1]
- if maxlen != self.lines.maxlen:
- self.lines = co.deque(self.lines, maxlen=maxlen)
- canvas_lines = 1
- def draw(self):
- # did terminal size change?
- if self.maxlen == 0:
- self.resize(0)
- # first thing first, give ourself a canvas
- while LinesIO.canvas_lines < len(self.lines):
- sys.stdout.write('\n')
- LinesIO.canvas_lines += 1
- # clear the bottom of the canvas if we shrink
- shrink = LinesIO.canvas_lines - len(self.lines)
- if shrink > 0:
- for i in range(shrink):
- sys.stdout.write('\r')
- if shrink-1-i > 0:
- sys.stdout.write('\x1b[%dA' % (shrink-1-i))
- sys.stdout.write('\x1b[K')
- if shrink-1-i > 0:
- sys.stdout.write('\x1b[%dB' % (shrink-1-i))
- sys.stdout.write('\x1b[%dA' % shrink)
- LinesIO.canvas_lines = len(self.lines)
- for i, line in enumerate(self.lines):
- # move cursor, clear line, disable/reenable line wrapping
- sys.stdout.write('\r')
- if len(self.lines)-1-i > 0:
- sys.stdout.write('\x1b[%dA' % (len(self.lines)-1-i))
- sys.stdout.write('\x1b[K')
- sys.stdout.write('\x1b[?7l')
- sys.stdout.write(line)
- sys.stdout.write('\x1b[?7h')
- if len(self.lines)-1-i > 0:
- sys.stdout.write('\x1b[%dB' % (len(self.lines)-1-i))
- sys.stdout.flush()
- # parse different data representations
- def dat(x):
- # allow the first part of an a/b fraction
- if '/' in x:
- x, _ = x.split('/', 1)
- # first try as int
- try:
- return int(x, 0)
- except ValueError:
- pass
- # then try as float
- try:
- return float(x)
- # just don't allow infinity or nan
- if m.isinf(x) or m.isnan(x):
- raise ValueError("invalid dat %r" % x)
- except ValueError:
- pass
- # else give up
- raise ValueError("invalid dat %r" % x)
- # a hack log that preserves sign, with a linear region between -1 and 1
- def symlog(x):
- if x > 1:
- return m.log(x)+1
- elif x < -1:
- return -m.log(-x)-1
- else:
- return x
- class Plot:
- def __init__(self, width, height, *,
- xlim=None,
- ylim=None,
- xlog=False,
- ylog=False,
- braille=False,
- dots=False):
- # scale if we're printing with dots or braille
- self.width = 2*width if braille else width
- self.height = (4*height if braille
- else 2*height if dots
- else height)
- self.xlim = xlim or (0, width)
- self.ylim = ylim or (0, height)
- self.xlog = xlog
- self.ylog = ylog
- self.braille = braille
- self.dots = dots
- self.grid = [('',False)]*(self.width*self.height)
- def scale(self, x, y):
- # scale and clamp
- try:
- if self.xlog:
- x = int(self.width * (
- (symlog(x)-symlog(self.xlim[0]))
- / (symlog(self.xlim[1])-symlog(self.xlim[0]))))
- else:
- x = int(self.width * (
- (x-self.xlim[0])
- / (self.xlim[1]-self.xlim[0])))
- if self.ylog:
- y = int(self.height * (
- (symlog(y)-symlog(self.ylim[0]))
- / (symlog(self.ylim[1])-symlog(self.ylim[0]))))
- else:
- y = int(self.height * (
- (y-self.ylim[0])
- / (self.ylim[1]-self.ylim[0])))
- except ZeroDivisionError:
- x = 0
- y = 0
- return x, y
- def point(self, x, y, *,
- color=COLORS[0],
- char=True):
- # scale
- x, y = self.scale(x, y)
- # ignore out of bounds points
- if x >= 0 and x < self.width and y >= 0 and y < self.height:
- self.grid[x + y*self.width] = (color, char)
- def line(self, x1, y1, x2, y2, *,
- color=COLORS[0],
- char=True):
- # scale
- x1, y1 = self.scale(x1, y1)
- x2, y2 = self.scale(x2, y2)
- # incremental error line algorithm
- ex = abs(x2 - x1)
- ey = -abs(y2 - y1)
- dx = +1 if x1 < x2 else -1
- dy = +1 if y1 < y2 else -1
- e = ex + ey
- while True:
- if x1 >= 0 and x1 < self.width and y1 >= 0 and y1 < self.height:
- self.grid[x1 + y1*self.width] = (color, char)
- e2 = 2*e
- if x1 == x2 and y1 == y2:
- break
- if e2 > ey:
- e += ey
- x1 += dx
- if x1 == x2 and y1 == y2:
- break
- if e2 < ex:
- e += ex
- y1 += dy
- if x2 >= 0 and x2 < self.width and y2 >= 0 and y2 < self.height:
- self.grid[x2 + y2*self.width] = (color, char)
- def plot(self, coords, *,
- color=COLORS[0],
- char=True,
- line_char=True):
- # draw lines
- if line_char:
- for (x1, y1), (x2, y2) in zip(coords, coords[1:]):
- if y1 is not None and y2 is not None:
- self.line(x1, y1, x2, y2,
- color=color,
- char=line_char)
- # draw points
- if char and (not line_char or char is not True):
- for x, y in coords:
- if y is not None:
- self.point(x, y,
- color=color,
- char=char)
- def draw(self, row, *,
- color=False):
- # scale if needed
- if self.braille:
- xscale, yscale = 2, 4
- elif self.dots:
- xscale, yscale = 1, 2
- else:
- xscale, yscale = 1, 1
- y = self.height//yscale-1 - row
- row_ = []
- for x in range(self.width//xscale):
- best_f = ''
- best_c = False
- # encode into a byte
- b = 0
- for i in range(xscale*yscale):
- f, c = self.grid[x*xscale+(xscale-1-(i%xscale))
- + (y*yscale+(i//xscale))*self.width]
- if c:
- b |= 1 << i
- if f:
- best_f = f
- if c and c is not True:
- best_c = c
- # use byte to lookup character
- if b:
- if best_c:
- c = best_c
- elif self.braille:
- c = CHARS_BRAILLE[b]
- else:
- c = CHARS_DOTS[b]
- else:
- c = ' '
- # color?
- if b and color and best_f:
- c = '\x1b[%sm%s\x1b[m' % (best_f, c)
- # draw axis in blank spaces
- if not b:
- if x == 0 and y == 0:
- c = '+'
- elif x == 0 and y == self.height//yscale-1:
- c = '^'
- elif x == self.width//xscale-1 and y == 0:
- c = '>'
- elif x == 0:
- c = '|'
- elif y == 0:
- c = '-'
- row_.append(c)
- return ''.join(row_)
- def collect(csv_paths, renames=[]):
- # collect results from CSV files
- results = []
- for path in csv_paths:
- try:
- with openio(path) as f:
- reader = csv.DictReader(f, restval='')
- for r in reader:
- results.append(r)
- except FileNotFoundError:
- pass
- if renames:
- for r in results:
- # make a copy so renames can overlap
- r_ = {}
- for new_k, old_k in renames:
- if old_k in r:
- r_[new_k] = r[old_k]
- r.update(r_)
- return results
- def dataset(results, x=None, y=None, define=[]):
- # organize by 'by', x, and y
- dataset = {}
- i = 0
- for r in results:
- # filter results by matching defines
- if not all(k in r and r[k] in vs for k, vs in define):
- continue
- # find xs
- if x is not None:
- if x not in r:
- continue
- try:
- x_ = dat(r[x])
- except ValueError:
- continue
- else:
- x_ = i
- i += 1
- # find ys
- if y is not None:
- if y not in r:
- continue
- try:
- y_ = dat(r[y])
- except ValueError:
- continue
- else:
- y_ = None
- if y_ is not None:
- dataset[x_] = y_ + dataset.get(x_, 0)
- else:
- dataset[x_] = y_ or dataset.get(x_, None)
- return dataset
- def datasets(results, by=None, x=None, y=None, define=[]):
- # filter results by matching defines
- results_ = []
- for r in results:
- if all(k in r and r[k] in vs for k, vs in define):
- results_.append(r)
- results = results_
- # if y not specified, try to guess from data
- if y is None:
- y = co.OrderedDict()
- for r in results:
- for k, v in r.items():
- if (by is None or k not in by) and v.strip():
- try:
- dat(v)
- y[k] = True
- except ValueError:
- y[k] = False
- y = list(k for k,v in y.items() if v)
- if by is not None:
- # find all 'by' values
- ks = set()
- for r in results:
- ks.add(tuple(r.get(k, '') for k in by))
- ks = sorted(ks)
- # collect all datasets
- datasets = co.OrderedDict()
- for ks_ in (ks if by is not None else [()]):
- for x_ in (x if x is not None else [None]):
- for y_ in y:
- # hide x/y if there is only one field
- k_x = x_ if len(x or []) > 1 else ''
- k_y = y_ if len(y or []) > 1 or (not ks_ and not k_x) else ''
- datasets[ks_ + (k_x, k_y)] = dataset(
- results,
- x_,
- y_,
- [(by_, {k_}) for by_, k_ in zip(by, ks_)]
- if by is not None else [])
- return datasets
- # some classes for organizing subplots into a grid
- class Subplot:
- def __init__(self, **args):
- self.x = 0
- self.y = 0
- self.xspan = 1
- self.yspan = 1
- self.args = args
- class Grid:
- def __init__(self, subplot, width=1.0, height=1.0):
- self.xweights = [width]
- self.yweights = [height]
- self.map = {(0,0): subplot}
- self.subplots = [subplot]
- def __repr__(self):
- return 'Grid(%r, %r)' % (self.xweights, self.yweights)
- @property
- def width(self):
- return len(self.xweights)
- @property
- def height(self):
- return len(self.yweights)
- def __iter__(self):
- return iter(self.subplots)
- def __getitem__(self, i):
- x, y = i
- if x < 0:
- x += len(self.xweights)
- if y < 0:
- y += len(self.yweights)
- return self.map[(x,y)]
- def merge(self, other, dir):
- if dir in ['above', 'below']:
- # first scale the two grids so they line up
- self_xweights = self.xweights
- other_xweights = other.xweights
- self_w = sum(self_xweights)
- other_w = sum(other_xweights)
- ratio = self_w / other_w
- other_xweights = [s*ratio for s in other_xweights]
- # now interleave xweights as needed
- new_xweights = []
- self_map = {}
- other_map = {}
- self_i = 0
- other_i = 0
- self_xweight = (self_xweights[self_i]
- if self_i < len(self_xweights) else m.inf)
- other_xweight = (other_xweights[other_i]
- if other_i < len(other_xweights) else m.inf)
- while self_i < len(self_xweights) and other_i < len(other_xweights):
- if other_xweight - self_xweight > 0.0000001:
- new_xweights.append(self_xweight)
- other_xweight -= self_xweight
- new_i = len(new_xweights)-1
- for j in range(len(self.yweights)):
- self_map[(new_i, j)] = self.map[(self_i, j)]
- for j in range(len(other.yweights)):
- other_map[(new_i, j)] = other.map[(other_i, j)]
- for s in other.subplots:
- if s.x+s.xspan-1 == new_i:
- s.xspan += 1
- elif s.x > new_i:
- s.x += 1
- self_i += 1
- self_xweight = (self_xweights[self_i]
- if self_i < len(self_xweights) else m.inf)
- elif self_xweight - other_xweight > 0.0000001:
- new_xweights.append(other_xweight)
- self_xweight -= other_xweight
- new_i = len(new_xweights)-1
- for j in range(len(other.yweights)):
- other_map[(new_i, j)] = other.map[(other_i, j)]
- for j in range(len(self.yweights)):
- self_map[(new_i, j)] = self.map[(self_i, j)]
- for s in self.subplots:
- if s.x+s.xspan-1 == new_i:
- s.xspan += 1
- elif s.x > new_i:
- s.x += 1
- other_i += 1
- other_xweight = (other_xweights[other_i]
- if other_i < len(other_xweights) else m.inf)
- else:
- new_xweights.append(self_xweight)
- new_i = len(new_xweights)-1
- for j in range(len(self.yweights)):
- self_map[(new_i, j)] = self.map[(self_i, j)]
- for j in range(len(other.yweights)):
- other_map[(new_i, j)] = other.map[(other_i, j)]
- self_i += 1
- self_xweight = (self_xweights[self_i]
- if self_i < len(self_xweights) else m.inf)
- other_i += 1
- other_xweight = (other_xweights[other_i]
- if other_i < len(other_xweights) else m.inf)
- # squish so ratios are preserved
- self_h = sum(self.yweights)
- other_h = sum(other.yweights)
- ratio = (self_h-other_h) / self_h
- self_yweights = [s*ratio for s in self.yweights]
- # finally concatenate the two grids
- if dir == 'above':
- for s in other.subplots:
- s.y += len(self_yweights)
- self.subplots.extend(other.subplots)
- self.xweights = new_xweights
- self.yweights = self_yweights + other.yweights
- self.map = self_map | {(x, y+len(self_yweights)): s
- for (x, y), s in other_map.items()}
- else:
- for s in self.subplots:
- s.y += len(other.yweights)
- self.subplots.extend(other.subplots)
- self.xweights = new_xweights
- self.yweights = other.yweights + self_yweights
- self.map = other_map | {(x, y+len(other.yweights)): s
- for (x, y), s in self_map.items()}
- if dir in ['right', 'left']:
- # first scale the two grids so they line up
- self_yweights = self.yweights
- other_yweights = other.yweights
- self_h = sum(self_yweights)
- other_h = sum(other_yweights)
- ratio = self_h / other_h
- other_yweights = [s*ratio for s in other_yweights]
- # now interleave yweights as needed
- new_yweights = []
- self_map = {}
- other_map = {}
- self_i = 0
- other_i = 0
- self_yweight = (self_yweights[self_i]
- if self_i < len(self_yweights) else m.inf)
- other_yweight = (other_yweights[other_i]
- if other_i < len(other_yweights) else m.inf)
- while self_i < len(self_yweights) and other_i < len(other_yweights):
- if other_yweight - self_yweight > 0.0000001:
- new_yweights.append(self_yweight)
- other_yweight -= self_yweight
- new_i = len(new_yweights)-1
- for j in range(len(self.xweights)):
- self_map[(j, new_i)] = self.map[(j, self_i)]
- for j in range(len(other.xweights)):
- other_map[(j, new_i)] = other.map[(j, other_i)]
- for s in other.subplots:
- if s.y+s.yspan-1 == new_i:
- s.yspan += 1
- elif s.y > new_i:
- s.y += 1
- self_i += 1
- self_yweight = (self_yweights[self_i]
- if self_i < len(self_yweights) else m.inf)
- elif self_yweight - other_yweight > 0.0000001:
- new_yweights.append(other_yweight)
- self_yweight -= other_yweight
- new_i = len(new_yweights)-1
- for j in range(len(other.xweights)):
- other_map[(j, new_i)] = other.map[(j, other_i)]
- for j in range(len(self.xweights)):
- self_map[(j, new_i)] = self.map[(j, self_i)]
- for s in self.subplots:
- if s.y+s.yspan-1 == new_i:
- s.yspan += 1
- elif s.y > new_i:
- s.y += 1
- other_i += 1
- other_yweight = (other_yweights[other_i]
- if other_i < len(other_yweights) else m.inf)
- else:
- new_yweights.append(self_yweight)
- new_i = len(new_yweights)-1
- for j in range(len(self.xweights)):
- self_map[(j, new_i)] = self.map[(j, self_i)]
- for j in range(len(other.xweights)):
- other_map[(j, new_i)] = other.map[(j, other_i)]
- self_i += 1
- self_yweight = (self_yweights[self_i]
- if self_i < len(self_yweights) else m.inf)
- other_i += 1
- other_yweight = (other_yweights[other_i]
- if other_i < len(other_yweights) else m.inf)
- # squish so ratios are preserved
- self_w = sum(self.xweights)
- other_w = sum(other.xweights)
- ratio = (self_w-other_w) / self_w
- self_xweights = [s*ratio for s in self.xweights]
- # finally concatenate the two grids
- if dir == 'right':
- for s in other.subplots:
- s.x += len(self_xweights)
- self.subplots.extend(other.subplots)
- self.xweights = self_xweights + other.xweights
- self.yweights = new_yweights
- self.map = self_map | {(x+len(self_xweights), y): s
- for (x, y), s in other_map.items()}
- else:
- for s in self.subplots:
- s.x += len(other.xweights)
- self.subplots.extend(other.subplots)
- self.xweights = other.xweights + self_xweights
- self.yweights = new_yweights
- self.map = other_map | {(x+len(other.xweights), y): s
- for (x, y), s in self_map.items()}
-
- def scale(self, width, height):
- self.xweights = [s*width for s in self.xweights]
- self.yweights = [s*height for s in self.yweights]
- @classmethod
- def fromargs(cls, width=1.0, height=1.0, *,
- subplots=[],
- **args):
- grid = cls(Subplot(**args))
- for dir, subargs in subplots:
- subgrid = cls.fromargs(
- width=subargs.pop('width',
- 0.5 if dir in ['right', 'left'] else width),
- height=subargs.pop('height',
- 0.5 if dir in ['above', 'below'] else height),
- **subargs)
- grid.merge(subgrid, dir)
- grid.scale(width, height)
- return grid
-
- def main(csv_paths, *,
- by=None,
- x=None,
- y=None,
- define=[],
- color=False,
- braille=False,
- colors=None,
- chars=None,
- line_chars=None,
- points=False,
- points_and_lines=False,
- width=None,
- height=None,
- xlim=(None,None),
- ylim=(None,None),
- xlog=False,
- ylog=False,
- x2=False,
- y2=False,
- xunits='',
- yunits='',
- xlabel=None,
- ylabel=None,
- xticklabels=None,
- yticklabels=None,
- title=None,
- legend_right=False,
- legend_above=False,
- legend_below=False,
- subplot={},
- subplots=[],
- cat=False,
- keep_open=False,
- sleep=None,
- **args):
- # figure out what color should be
- if color == 'auto':
- color = sys.stdout.isatty()
- elif color == 'always':
- color = True
- else:
- color = False
- # what colors to use?
- if colors is not None:
- colors_ = colors
- else:
- colors_ = COLORS
- if chars is not None:
- chars_ = chars
- elif points_and_lines:
- chars_ = CHARS_POINTS_AND_LINES
- else:
- chars_ = [True]
- if line_chars is not None:
- line_chars_ = line_chars
- elif points_and_lines or not points:
- line_chars_ = [True]
- else:
- line_chars_ = [False]
- # allow escape codes in labels/titles
- title = escape(title).splitlines() if title is not None else []
- xlabel = escape(xlabel).splitlines() if xlabel is not None else []
- ylabel = escape(ylabel).splitlines() if ylabel is not None else []
- # separate out renames
- renames = list(it.chain.from_iterable(
- ((k, v) for v in vs)
- for k, vs in it.chain(by or [], x or [], y or [])))
- if by is not None:
- by = [k for k, _ in by]
- if x is not None:
- x = [k for k, _ in x]
- if y is not None:
- y = [k for k, _ in y]
- # create a grid of subplots
- grid = Grid.fromargs(
- subplots=subplots + subplot.pop('subplots', []),
- **subplot)
- for s in grid:
- # allow subplot params to override global params
- x2_ = s.args.get('x2', False) or x2
- y2_ = s.args.get('y2', False) or y2
- xunits_ = s.args.get('xunits', xunits)
- yunits_ = s.args.get('yunits', yunits)
- xticklabels_ = s.args.get('xticklabels', xticklabels)
- yticklabels_ = s.args.get('yticklabels', yticklabels)
- # label/titles are handled a bit differently in subplots
- subtitle = s.args.get('title')
- xsublabel = s.args.get('xlabel')
- ysublabel = s.args.get('ylabel')
- # allow escape codes in sublabels/subtitles
- subtitle = (escape(subtitle).splitlines()
- if subtitle is not None else [])
- xsublabel = (escape(xsublabel).splitlines()
- if xsublabel is not None else [])
- ysublabel = (escape(ysublabel).splitlines()
- if ysublabel is not None else [])
- # don't allow >2 ticklabels and render single ticklabels only once
- if xticklabels_ is not None:
- if len(xticklabels_) == 1:
- xticklabels_ = ["", xticklabels_[0]]
- elif len(xticklabels_) > 2:
- xticklabels_ = [xticklabels_[0], xticklabels_[-1]]
- if yticklabels_ is not None:
- if len(yticklabels_) == 1:
- yticklabels_ = ["", yticklabels_[0]]
- elif len(yticklabels_) > 2:
- yticklabels_ = [yticklabels_[0], yticklabels_[-1]]
- s.x2 = x2_
- s.y2 = y2_
- s.xunits = xunits_
- s.yunits = yunits_
- s.xticklabels = xticklabels_
- s.yticklabels = yticklabels_
- s.title = subtitle
- s.xlabel = xsublabel
- s.ylabel = ysublabel
- # preprocess margins so they can be shared
- for s in grid:
- s.xmargin = (
- len(s.ylabel) + (1 if s.ylabel else 0) # fit ysublabel
- + (1 if s.x > 0 else 0), # space between
- ((5 if s.y2 else 4) + len(s.yunits) # fit yticklabels
- if s.yticklabels is None
- else max((len(t) for t in s.yticklabels), default=0))
- + (1 if s.yticklabels != [] else 0),
- )
- s.ymargin = (
- len(s.xlabel), # fit xsublabel
- 1 if s.xticklabels != [] else 0, # fit xticklabels
- len(s.title), # fit subtitle
- )
- for s in grid:
- # share margins so everything aligns nicely
- s.xmargin = (
- max(s_.xmargin[0] for s_ in grid if s_.x == s.x),
- max(s_.xmargin[1] for s_ in grid if s_.x == s.x),
- )
- s.ymargin = (
- max(s_.ymargin[0] for s_ in grid if s_.y == s.y),
- max(s_.ymargin[1] for s_ in grid if s_.y == s.y),
- max(s_.ymargin[-1] for s_ in grid if s_.y+s_.yspan == s.y+s.yspan),
- )
- def draw(f):
- def writeln(s=''):
- f.write(s)
- f.write('\n')
- f.writeln = writeln
- # first collect results from CSV files
- results = collect(csv_paths, renames)
- # then extract the requested datasets
- datasets_ = datasets(results, by, x, y, define)
- # figure out colors/chars here so that subplot defines
- # don't change them later, that'd be bad
- datacolors_ = {
- name: colors_[i % len(colors_)]
- for i, name in enumerate(datasets_.keys())}
- datachars_ = {
- name: chars_[i % len(chars_)]
- for i, name in enumerate(datasets_.keys())}
- dataline_chars_ = {
- name: line_chars_[i % len(line_chars_)]
- for i, name in enumerate(datasets_.keys())}
- # build legend?
- legend_width = 0
- if legend_right or legend_above or legend_below:
- legend_ = []
- for i, k in enumerate(datasets_.keys()):
- label = '%s%s' % (
- '%s ' % chars_[i % len(chars_)]
- if chars is not None
- else '%s ' % line_chars_[i % len(line_chars_)]
- if line_chars is not None
- else '',
- ','.join(k_ for k_ in k if k_))
- if label:
- legend_.append(label)
- legend_width = max(legend_width, len(label)+1)
- # figure out our canvas size
- if width is None:
- width_ = min(80, shutil.get_terminal_size((80, None))[0])
- elif width:
- width_ = width
- else:
- width_ = shutil.get_terminal_size((80, None))[0]
- if height is None:
- height_ = 17 + len(title) + len(xlabel)
- elif height:
- height_ = height
- else:
- height_ = shutil.get_terminal_size((None,
- 17 + len(title) + len(xlabel)))[1]
- # make space for shell prompt
- if not keep_open:
- height_ -= 1
- # carve out space for the xlabel
- height_ -= len(xlabel)
- # carve out space for the ylabel
- width_ -= len(ylabel) + (1 if ylabel else 0)
- # carve out space for title
- height_ -= len(title)
- # carve out space for the legend
- if legend_right and legend_:
- width_ -= legend_width
- if legend_above and legend_:
- legend_cols = len(legend_)
- while True:
- legend_widths = [
- max(len(l) for l in legend_[i::legend_cols])
- for i in range(legend_cols)]
- if (legend_cols <= 1
- or sum(legend_widths)+2*(legend_cols-1)
- + max(sum(s.xmargin[:2]) for s in grid if s.x == 0)
- <= width_):
- break
- legend_cols -= 1
- height_ -= (len(legend_)+legend_cols-1) // legend_cols
- if legend_below and legend_:
- legend_cols = len(legend_)
- while True:
- legend_widths = [
- max(len(l) for l in legend_[i::legend_cols])
- for i in range(legend_cols)]
- if (legend_cols <= 1
- or sum(legend_widths)+2*(legend_cols-1)
- + max(sum(s.xmargin[:2]) for s in grid if s.x == 0)
- <= width_):
- break
- legend_cols -= 1
- height_ -= (len(legend_)+legend_cols-1) // legend_cols
- # figure out the grid dimensions
- #
- # note we floor to give the dimension tweaks the best chance of not
- # exceeding the requested dimensions, this means we usually are less
- # than the requested dimensions by quite a bit when we have many
- # subplots, but it's a tradeoff for a relatively simple implementation
- widths = [m.floor(w*width_) for w in grid.xweights]
- heights = [m.floor(w*height_) for w in grid.yweights]
- # tweak dimensions to allow all plots to have a minimum width,
- # this may force the plot to be larger than the requested dimensions,
- # but that's the best we can do
- for s in grid:
- # fit xunits
- minwidth = sum(s.xmargin) + max(2,
- 2*((5 if s.x2 else 4)+len(s.xunits))
- if s.xticklabels is None
- else sum(len(t) for t in s.xticklabels))
- # fit yunits
- minheight = sum(s.ymargin) + 2
- i = 0
- while minwidth > sum(widths[s.x:s.x+s.xspan]):
- widths[s.x+i] += 1
- i = (i + 1) % s.xspan
- i = 0
- while minheight > sum(heights[s.y:s.y+s.yspan]):
- heights[s.y+i] += 1
- i = (i + 1) % s.yspan
- width_ = sum(widths)
- height_ = sum(heights)
- # create a plot for each subplot
- for s in grid:
- # allow subplot params to override global params
- define_ = define + s.args.get('define', [])
- xlim_ = s.args.get('xlim', xlim)
- ylim_ = s.args.get('ylim', ylim)
- xlog_ = s.args.get('xlog', False) or xlog
- ylog_ = s.args.get('ylog', False) or ylog
- # allow shortened ranges
- if len(xlim_) == 1:
- xlim_ = (0, xlim_[0])
- if len(ylim_) == 1:
- ylim_ = (0, ylim_[0])
- # data can be constrained by subplot-specific defines,
- # so re-extract for each plot
- subdatasets = datasets(results, by, x, y, define_)
- # find actual xlim/ylim
- xlim_ = (
- xlim_[0] if xlim_[0] is not None
- else min(it.chain([0], (k
- for r in subdatasets.values()
- for k, v in r.items()
- if v is not None))),
- xlim_[1] if xlim_[1] is not None
- else max(it.chain([0], (k
- for r in subdatasets.values()
- for k, v in r.items()
- if v is not None))))
- ylim_ = (
- ylim_[0] if ylim_[0] is not None
- else min(it.chain([0], (v
- for r in subdatasets.values()
- for _, v in r.items()
- if v is not None))),
- ylim_[1] if ylim_[1] is not None
- else max(it.chain([0], (v
- for r in subdatasets.values()
- for _, v in r.items()
- if v is not None))))
- # find actual width/height
- subwidth = sum(widths[s.x:s.x+s.xspan]) - sum(s.xmargin)
- subheight = sum(heights[s.y:s.y+s.yspan]) - sum(s.ymargin)
- # plot!
- plot = Plot(
- subwidth,
- subheight,
- xlim=xlim_,
- ylim=ylim_,
- xlog=xlog_,
- ylog=ylog_,
- braille=line_chars is None and braille,
- dots=line_chars is None and not braille)
- for name, dataset in subdatasets.items():
- plot.plot(
- sorted((x,y) for x,y in dataset.items()),
- color=datacolors_[name],
- char=datachars_[name],
- line_char=dataline_chars_[name])
- s.plot = plot
- s.width = subwidth
- s.height = subheight
- s.xlim = xlim_
- s.ylim = ylim_
- # now that everything's plotted, let's render things to the terminal
- # figure out margin
- xmargin = (
- len(ylabel) + (1 if ylabel else 0),
- sum(grid[0,0].xmargin[:2]),
- )
- ymargin = (
- sum(grid[0,0].ymargin[:2]),
- grid[-1,-1].ymargin[-1],
- )
- # draw title?
- for line in title:
- f.writeln('%*s%s' % (
- sum(xmargin[:2]), '',
- line.center(width_-xmargin[1])))
- # draw legend_above?
- if legend_above and legend_:
- for i in range(0, len(legend_), legend_cols):
- f.writeln('%*s%s' % (
- max(sum(xmargin[:2])
- + (width_-xmargin[1]
- - (sum(legend_widths)+2*(legend_cols-1)))
- // 2,
- 0), '',
- ' '.join('%s%s%s' % (
- '\x1b[%sm' % colors_[(i+j) % len(colors_)]
- if color else '',
- '%-*s' % (legend_widths[j], legend_[i+j]),
- '\x1b[m'
- if color else '')
- for j in range(min(legend_cols, len(legend_)-i)))))
- for row in range(height_):
- # draw ylabel?
- f.write(
- '%s ' % ''.join(
- ('%*s%s%*s' % (
- ymargin[-1], '',
- line.center(height_-sum(ymargin)),
- ymargin[0], ''))[row]
- for line in ylabel)
- if ylabel else '')
- for x_ in range(grid.width):
- # figure out the grid x/y position
- subrow = row
- y_ = len(heights)-1
- while subrow >= heights[y_]:
- subrow -= heights[y_]
- y_ -= 1
- s = grid[x_, y_]
- subrow = row - sum(heights[s.y+s.yspan:])
- # header
- if subrow < s.ymargin[-1]:
- # draw subtitle?
- if subrow < len(s.title):
- f.write('%*s%s' % (
- sum(s.xmargin[:2]), '',
- s.title[subrow].center(s.width)))
- else:
- f.write('%*s%*s' % (
- sum(s.xmargin[:2]), '',
- s.width, ''))
- # draw plot?
- elif subrow-s.ymargin[-1] < s.height:
- subrow = subrow-s.ymargin[-1]
- # draw ysublabel?
- f.write('%-*s' % (
- s.xmargin[0],
- '%s ' % ''.join(
- line.center(s.height)[subrow]
- for line in s.ylabel)
- if s.ylabel else ''))
- # draw yunits?
- if subrow == 0 and s.yticklabels != []:
- f.write('%*s' % (
- s.xmargin[1],
- ((si2 if s.y2 else si)(s.ylim[1]) + s.yunits
- if s.yticklabels is None
- else s.yticklabels[1])
- + ' '))
- elif subrow == s.height-1 and s.yticklabels != []:
- f.write('%*s' % (
- s.xmargin[1],
- ((si2 if s.y2 else si)(s.ylim[0]) + s.yunits
- if s.yticklabels is None
- else s.yticklabels[0])
- + ' '))
- else:
- f.write('%*s' % (
- s.xmargin[1], ''))
- # draw plot!
- f.write(s.plot.draw(subrow, color=color))
- # footer
- else:
- subrow = subrow-s.ymargin[-1]-s.height
- # draw xunits?
- if subrow < (1 if s.xticklabels != [] else 0):
- f.write('%*s%-*s%*s%*s' % (
- sum(s.xmargin[:2]), '',
- (5 if s.x2 else 4) + len(s.xunits)
- if s.xticklabels is None
- else len(s.xticklabels[0]),
- (si2 if s.x2 else si)(s.xlim[0]) + s.xunits
- if s.xticklabels is None
- else s.xticklabels[0],
- s.width - (2*((5 if s.x2 else 4)+len(s.xunits))
- if s.xticklabels is None
- else sum(len(t) for t in s.xticklabels)), '',
- (5 if s.x2 else 4) + len(s.xunits)
- if s.xticklabels is None
- else len(s.xticklabels[1]),
- (si2 if s.x2 else si)(s.xlim[1]) + s.xunits
- if s.xticklabels is None
- else s.xticklabels[1]))
- # draw xsublabel?
- elif (subrow < s.ymargin[1]
- or subrow-s.ymargin[1] >= len(s.xlabel)):
- f.write('%*s%*s' % (
- sum(s.xmargin[:2]), '',
- s.width, ''))
- else:
- f.write('%*s%s' % (
- sum(s.xmargin[:2]), '',
- s.xlabel[subrow-s.ymargin[1]].center(s.width)))
- # draw legend_right?
- if (legend_right and legend_
- and row >= ymargin[-1]
- and row-ymargin[-1] < len(legend_)):
- j = row-ymargin[-1]
- f.write(' %s%s%s' % (
- '\x1b[%sm' % colors_[j % len(colors_)] if color else '',
- legend_[j],
- '\x1b[m' if color else ''))
- f.writeln()
- # draw xlabel?
- for line in xlabel:
- f.writeln('%*s%s' % (
- sum(xmargin[:2]), '',
- line.center(width_-xmargin[1])))
- # draw legend below?
- if legend_below and legend_:
- for i in range(0, len(legend_), legend_cols):
- f.writeln('%*s%s' % (
- max(sum(xmargin[:2])
- + (width_-xmargin[1]
- - (sum(legend_widths)+2*(legend_cols-1)))
- // 2,
- 0), '',
- ' '.join('%s%s%s' % (
- '\x1b[%sm' % colors_[(i+j) % len(colors_)]
- if color else '',
- '%-*s' % (legend_widths[j], legend_[i+j]),
- '\x1b[m'
- if color else '')
- for j in range(min(legend_cols, len(legend_)-i)))))
- if keep_open:
- try:
- while True:
- if cat:
- draw(sys.stdout)
- else:
- ring = LinesIO()
- draw(ring)
- ring.draw()
- # try to inotifywait
- if inotify_simple is not None:
- ptime = time.time()
- inotifywait(csv_paths)
- # sleep for a minimum amount of time, this helps issues
- # around rapidly updating files
- time.sleep(max(0, (sleep or 0.01) - (time.time()-ptime)))
- else:
- time.sleep(sleep or 0.1)
- except KeyboardInterrupt:
- pass
- if cat:
- draw(sys.stdout)
- else:
- ring = LinesIO()
- draw(ring)
- ring.draw()
- sys.stdout.write('\n')
- else:
- draw(sys.stdout)
- if __name__ == "__main__":
- import sys
- import argparse
- parser = argparse.ArgumentParser(
- description="Plot CSV files in terminal.",
- allow_abbrev=False)
- parser.add_argument(
- 'csv_paths',
- nargs='*',
- help="Input *.csv files.")
- parser.add_argument(
- '-b', '--by',
- action='append',
- type=lambda x: (
- lambda k,v=None: (k, v.split(',') if v is not None else ())
- )(*x.split('=', 1)),
- help="Group by this field. Can rename fields with new_name=old_name.")
- parser.add_argument(
- '-x',
- action='append',
- type=lambda x: (
- lambda k,v=None: (k, v.split(',') if v is not None else ())
- )(*x.split('=', 1)),
- help="Field to use for the x-axis. Can rename fields with "
- "new_name=old_name.")
- parser.add_argument(
- '-y',
- action='append',
- type=lambda x: (
- lambda k,v=None: (k, v.split(',') if v is not None else ())
- )(*x.split('=', 1)),
- help="Field to use for the y-axis. Can rename fields with "
- "new_name=old_name.")
- parser.add_argument(
- '-D', '--define',
- type=lambda x: (lambda k,v: (k, set(v.split(','))))(*x.split('=', 1)),
- action='append',
- help="Only include results where this field is this value. May include "
- "comma-separated options.")
- parser.add_argument(
- '--color',
- choices=['never', 'always', 'auto'],
- default='auto',
- help="When to use terminal colors. Defaults to 'auto'.")
- parser.add_argument(
- '-⣿', '--braille',
- action='store_true',
- help="Use 2x4 unicode braille characters. Note that braille characters "
- "sometimes suffer from inconsistent widths.")
- parser.add_argument(
- '-.', '--points',
- action='store_true',
- help="Only draw data points.")
- parser.add_argument(
- '-!', '--points-and-lines',
- action='store_true',
- help="Draw data points and lines.")
- parser.add_argument(
- '--colors',
- type=lambda x: [x.strip() for x in x.split(',')],
- help="Comma-separated colors to use.")
- parser.add_argument(
- '--chars',
- help="Characters to use for points.")
- parser.add_argument(
- '--line-chars',
- help="Characters to use for lines.")
- parser.add_argument(
- '-W', '--width',
- nargs='?',
- type=lambda x: int(x, 0),
- const=0,
- help="Width in columns. 0 uses the terminal width. Defaults to "
- "min(terminal, 80).")
- parser.add_argument(
- '-H', '--height',
- nargs='?',
- type=lambda x: int(x, 0),
- const=0,
- help="Height in rows. 0 uses the terminal height. Defaults to 17.")
- parser.add_argument(
- '-X', '--xlim',
- type=lambda x: tuple(
- dat(x) if x.strip() else None
- for x in x.split(',')),
- help="Range for the x-axis.")
- parser.add_argument(
- '-Y', '--ylim',
- type=lambda x: tuple(
- dat(x) if x.strip() else None
- for x in x.split(',')),
- help="Range for the y-axis.")
- parser.add_argument(
- '--xlog',
- action='store_true',
- help="Use a logarithmic x-axis.")
- parser.add_argument(
- '--ylog',
- action='store_true',
- help="Use a logarithmic y-axis.")
- parser.add_argument(
- '--x2',
- action='store_true',
- help="Use base-2 prefixes for the x-axis.")
- parser.add_argument(
- '--y2',
- action='store_true',
- help="Use base-2 prefixes for the y-axis.")
- parser.add_argument(
- '--xunits',
- help="Units for the x-axis.")
- parser.add_argument(
- '--yunits',
- help="Units for the y-axis.")
- parser.add_argument(
- '--xlabel',
- help="Add a label to the x-axis.")
- parser.add_argument(
- '--ylabel',
- help="Add a label to the y-axis.")
- parser.add_argument(
- '--xticklabels',
- type=lambda x:
- [x.strip() for x in x.split(',')]
- if x.strip() else [],
- help="Comma separated xticklabels.")
- parser.add_argument(
- '--yticklabels',
- type=lambda x:
- [x.strip() for x in x.split(',')]
- if x.strip() else [],
- help="Comma separated yticklabels.")
- parser.add_argument(
- '-t', '--title',
- help="Add a title.")
- parser.add_argument(
- '-l', '--legend-right',
- action='store_true',
- help="Place a legend to the right.")
- parser.add_argument(
- '--legend-above',
- action='store_true',
- help="Place a legend above.")
- parser.add_argument(
- '--legend-below',
- action='store_true',
- help="Place a legend below.")
- class AppendSubplot(argparse.Action):
- @staticmethod
- def parse(value):
- import copy
- subparser = copy.deepcopy(parser)
- next(a for a in subparser._actions
- if '--width' in a.option_strings).type = float
- next(a for a in subparser._actions
- if '--height' in a.option_strings).type = float
- return subparser.parse_intermixed_args(shlex.split(value or ""))
- def __call__(self, parser, namespace, value, option):
- if not hasattr(namespace, 'subplots'):
- namespace.subplots = []
- namespace.subplots.append((
- option.split('-')[-1],
- self.__class__.parse(value)))
- parser.add_argument(
- '--subplot-above',
- action=AppendSubplot,
- help="Add subplot above with the same dataset. Takes an arg string to "
- "control the subplot which supports most (but not all) of the "
- "parameters listed here. The relative dimensions of the subplot "
- "can be controlled with -W/-H which now take a percentage.")
- parser.add_argument(
- '--subplot-below',
- action=AppendSubplot,
- help="Add subplot below with the same dataset.")
- parser.add_argument(
- '--subplot-left',
- action=AppendSubplot,
- help="Add subplot left with the same dataset.")
- parser.add_argument(
- '--subplot-right',
- action=AppendSubplot,
- help="Add subplot right with the same dataset.")
- parser.add_argument(
- '--subplot',
- type=AppendSubplot.parse,
- help="Add subplot-specific arguments to the main plot.")
- parser.add_argument(
- '-z', '--cat',
- action='store_true',
- help="Pipe directly to stdout.")
- parser.add_argument(
- '-k', '--keep-open',
- action='store_true',
- help="Continue to open and redraw the CSV files in a loop.")
- parser.add_argument(
- '-s', '--sleep',
- type=float,
- help="Time in seconds to sleep between redraws when running with -k. "
- "Defaults to 0.01.")
- def dictify(ns):
- if hasattr(ns, 'subplots'):
- ns.subplots = [(dir, dictify(subplot_ns))
- for dir, subplot_ns in ns.subplots]
- if ns.subplot is not None:
- ns.subplot = dictify(ns.subplot)
- return {k: v
- for k, v in vars(ns).items()
- if v is not None}
- sys.exit(main(**dictify(parser.parse_intermixed_args())))
|