lfs.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406
  1. /*
  2. * The little filesystem
  3. *
  4. * Copyright (c) 2017 Christopher Haster
  5. * Distributed under the MIT license
  6. */
  7. #include "lfs.h"
  8. #include "lfs_util.h"
  9. #include <string.h>
  10. #include <stdbool.h>
  11. /// Block device operations ///
  12. static int lfs_bd_info(lfs_t *lfs, struct lfs_bd_info *info) {
  13. return lfs->bd_ops->info(lfs->bd, info);
  14. }
  15. static int lfs_bd_read(lfs_t *lfs, lfs_block_t block,
  16. lfs_off_t off, lfs_size_t size, void *buffer) {
  17. return lfs->bd_ops->read(lfs->bd, block, off, size, buffer);
  18. }
  19. static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block,
  20. lfs_off_t off, lfs_size_t size, const void *buffer) {
  21. return lfs->bd_ops->prog(lfs->bd, block, off, size, buffer);
  22. }
  23. static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block,
  24. lfs_off_t off, lfs_size_t size) {
  25. return lfs->bd_ops->erase(lfs->bd, block, off, size);
  26. }
  27. static int lfs_bd_sync(lfs_t *lfs) {
  28. return lfs->bd_ops->sync(lfs->bd);
  29. }
  30. static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block,
  31. lfs_off_t off, lfs_size_t size, const void *buffer) {
  32. const uint8_t *data = buffer;
  33. for (lfs_off_t i = 0; i < size; i++) {
  34. uint8_t c;
  35. int err = lfs_bd_read(lfs, block, off+i, 1, &c);
  36. if (err) {
  37. return err;
  38. }
  39. if (c != *data) {
  40. return false;
  41. }
  42. data += 1;
  43. }
  44. return true;
  45. }
  46. static int lfs_bd_crc(lfs_t *lfs, lfs_block_t block,
  47. lfs_off_t off, lfs_size_t size, uint32_t *crc) {
  48. while (off < size) {
  49. uint8_t c;
  50. int err = lfs_bd_read(lfs, block, off, 1, &c);
  51. if (err) {
  52. return err;
  53. }
  54. *crc = lfs_crc(&c, 1, *crc);
  55. off += 1;
  56. }
  57. return 0;
  58. }
  59. /// Block allocator ///
  60. // predeclared filesystem traversal
  61. static int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data);
  62. int lfs_deorphan(lfs_t *lfs);
  63. static int lfs_alloc_lookahead(void *p, lfs_block_t block) {
  64. lfs_t *lfs = p;
  65. lfs_block_t off = block - lfs->free.begin;
  66. if (off < LFS_CFG_LOOKAHEAD) {
  67. lfs->lookahead[off / 32] |= 1U << (off % 32);
  68. }
  69. return 0;
  70. }
  71. static int lfs_alloc_stride(void *p, lfs_block_t block) {
  72. lfs_t *lfs = p;
  73. lfs_block_t noff = block - lfs->free.begin;
  74. lfs_block_t off = lfs->free.end - lfs->free.begin;
  75. if (noff < off) {
  76. lfs->free.end = noff + lfs->free.begin;
  77. }
  78. return 0;
  79. }
  80. static int lfs_alloc_scan(lfs_t *lfs) {
  81. lfs_block_t start = lfs->free.begin;
  82. while (true) {
  83. // mask out blocks in lookahead region
  84. memset(lfs->lookahead, 0, sizeof(lfs->lookahead));
  85. int err = lfs_traverse(lfs, lfs_alloc_lookahead, lfs);
  86. if (err) {
  87. return err;
  88. }
  89. // check if we've found a free block
  90. for (uint32_t off = 0; off < LFS_CFG_LOOKAHEAD; off++) {
  91. if (lfs->lookahead[off / 32] & (1U << (off % 32))) {
  92. continue;
  93. }
  94. // found free block, now find stride of free blocks
  95. // since this is relatively cheap (stress on relatively)
  96. lfs->free.begin += off;
  97. lfs->free.end = lfs->block_count; // before superblock
  98. // find maximum stride in tree
  99. return lfs_traverse(lfs, lfs_alloc_stride, lfs);
  100. }
  101. // continue to next lookahead unless we've searched the whole device
  102. if (start-1 - lfs->free.begin < LFS_CFG_LOOKAHEAD) {
  103. return 0;
  104. }
  105. // continue to next lookahead region
  106. lfs->free.begin += LFS_CFG_LOOKAHEAD;
  107. }
  108. }
  109. static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) {
  110. // If we don't remember any free blocks we will need to start searching
  111. if (lfs->free.begin == lfs->free.end) {
  112. int err = lfs_alloc_scan(lfs);
  113. if (err) {
  114. return err;
  115. }
  116. if (lfs->free.begin == lfs->free.end) {
  117. // Still can't allocate a block? check for orphans
  118. int err = lfs_deorphan(lfs);
  119. if (err) {
  120. return err;
  121. }
  122. err = lfs_alloc_scan(lfs);
  123. if (err) {
  124. return err;
  125. }
  126. if (lfs->free.begin == lfs->free.end) {
  127. // Ok, it's true, we're out of space
  128. return LFS_ERROR_NO_SPACE;
  129. }
  130. }
  131. }
  132. // Take first available block
  133. *block = lfs->free.begin;
  134. lfs->free.begin += 1;
  135. return 0;
  136. }
  137. static int lfs_alloc_erased(lfs_t *lfs, lfs_block_t *block) {
  138. int err = lfs_alloc(lfs, block);
  139. if (err) {
  140. return err;
  141. }
  142. return lfs_bd_erase(lfs, *block, 0, lfs->block_size);
  143. }
  144. /// Index list operations ///
  145. // Next index offset
  146. static lfs_off_t lfs_indexnext(lfs_t *lfs, lfs_off_t ioff) {
  147. ioff += 1;
  148. while (ioff % lfs->words == 0) {
  149. ioff += lfs_min(lfs_ctz(ioff/lfs->words + 1), lfs->words-1) + 1;
  150. }
  151. return ioff;
  152. }
  153. static lfs_off_t lfs_indexfrom(lfs_t *lfs, lfs_off_t off) {
  154. lfs_off_t i = 0;
  155. while (off > lfs->block_size) {
  156. i = lfs_indexnext(lfs, i);
  157. off -= lfs->block_size;
  158. }
  159. return i;
  160. }
  161. // Find index in index chain given its index offset
  162. static int lfs_index_find(lfs_t *lfs, lfs_block_t head,
  163. lfs_size_t icount, lfs_off_t ioff, lfs_block_t *block) {
  164. lfs_off_t iitarget = ioff / lfs->words;
  165. lfs_off_t iicurrent = (icount-1) / lfs->words;
  166. while (iitarget != iicurrent) {
  167. lfs_size_t skip = lfs_min(
  168. lfs_min(lfs_ctz(iicurrent+1), lfs->words-1),
  169. lfs_npw2((iitarget ^ iicurrent)+1)-1);
  170. int err = lfs_bd_read(lfs, head, 4*skip, 4, &head);
  171. if (err) {
  172. return err;
  173. }
  174. iicurrent -= 1 << skip;
  175. }
  176. return lfs_bd_read(lfs, head, 4*(ioff % lfs->words), 4, block);
  177. }
  178. // Append index to index chain, updates head and icount
  179. static int lfs_index_append(lfs_t *lfs, lfs_block_t *headp,
  180. lfs_size_t *icountp, lfs_block_t block) {
  181. lfs_block_t head = *headp;
  182. lfs_size_t ioff = *icountp - 1;
  183. ioff += 1;
  184. while (ioff % lfs->words == 0) {
  185. lfs_block_t nhead;
  186. int err = lfs_alloc_erased(lfs, &nhead);
  187. if (err) {
  188. return err;
  189. }
  190. lfs_off_t skips = lfs_min(
  191. lfs_ctz(ioff/lfs->words + 1), lfs->words-2) + 1;
  192. for (lfs_off_t i = 0; i < skips; i++) {
  193. err = lfs_bd_prog(lfs, nhead, 4*i, 4, &head);
  194. if (err) {
  195. return err;
  196. }
  197. if (head && i != skips-1) {
  198. err = lfs_bd_read(lfs, head, 4*i, 4, &head);
  199. if (err) {
  200. return err;
  201. }
  202. }
  203. }
  204. ioff += skips;
  205. head = nhead;
  206. }
  207. int err = lfs_bd_prog(lfs, head, 4*(ioff % lfs->words), 4, &block);
  208. if (err) {
  209. return err;
  210. }
  211. *headp = head;
  212. *icountp = ioff + 1;
  213. return 0;
  214. }
  215. static int lfs_index_traverse(lfs_t *lfs, lfs_block_t head,
  216. lfs_size_t icount, int (*cb)(void*, lfs_block_t), void *data) {
  217. lfs_off_t iicurrent = (icount-1) / lfs->words;
  218. while (iicurrent > 0) {
  219. int err = cb(data, head);
  220. if (err) {
  221. return err;
  222. }
  223. lfs_size_t skip = lfs_min(lfs_ctz(iicurrent+1), lfs->words-1);
  224. for (lfs_off_t i = skip; i < lfs->words; i++) {
  225. lfs_block_t block;
  226. int err = lfs_bd_read(lfs, head, 4*i, 4, &block);
  227. if (err) {
  228. return err;
  229. }
  230. err = cb(data, block);
  231. if (err) {
  232. return err;
  233. }
  234. }
  235. err = lfs_bd_read(lfs, head, 0, 4, &head);
  236. if (err) {
  237. return err;
  238. }
  239. iicurrent -= 1;
  240. }
  241. int err = cb(data, head);
  242. if (err) {
  243. return err;
  244. }
  245. for (lfs_off_t i = 0; i < lfs->words; i++) {
  246. lfs_block_t block;
  247. int err = lfs_bd_read(lfs, head, 4*i, 4, &block);
  248. if (err) {
  249. return err;
  250. }
  251. err = cb(data, block);
  252. if (err) {
  253. return err;
  254. }
  255. }
  256. return 0;
  257. }
  258. /// Metadata pair operations ///
  259. static inline void lfs_pairswap(lfs_block_t pair[2]) {
  260. lfs_block_t t = pair[0];
  261. pair[0] = pair[1];
  262. pair[1] = t;
  263. }
  264. static inline int lfs_paircmp(
  265. const lfs_block_t paira[2],
  266. const lfs_block_t pairb[2]) {
  267. return !((paira[0] == pairb[0] && paira[1] == pairb[1]) ||
  268. (paira[0] == pairb[1] && paira[1] == pairb[0]));
  269. }
  270. struct lfs_fetch_region {
  271. lfs_off_t off;
  272. lfs_size_t size;
  273. void *data;
  274. };
  275. static int lfs_pair_fetch(lfs_t *lfs, lfs_block_t pair[2],
  276. int count, const struct lfs_fetch_region *regions) {
  277. int checked = 0;
  278. int rev = 0;
  279. for (int i = 0; i < 2; i++) {
  280. uint32_t nrev;
  281. int err = lfs_bd_read(lfs, pair[1], 0, 4, &nrev);
  282. if (err) {
  283. return err;
  284. }
  285. if (checked > 0 && lfs_scmp(nrev, rev) < 0) {
  286. continue;
  287. }
  288. uint32_t crc = 0xffffffff;
  289. err = lfs_bd_crc(lfs, pair[1], 0, lfs->block_size, &crc);
  290. if (err) {
  291. return err;
  292. }
  293. if (crc != 0) {
  294. lfs_pairswap(pair);
  295. }
  296. checked += 1;
  297. rev = nrev;
  298. lfs_pairswap(pair);
  299. }
  300. if (checked == 0) {
  301. LFS_ERROR("Corrupted metadata pair at %d %d", pair[0], pair[1]);
  302. return LFS_ERROR_CORRUPT;
  303. }
  304. for (int i = 0; i < count; i++) {
  305. int err = lfs_bd_read(lfs, pair[0],
  306. regions[i].off, regions[i].size, regions[i].data);
  307. if (err) {
  308. return err;
  309. }
  310. }
  311. return 0;
  312. }
  313. struct lfs_commit_region {
  314. lfs_off_t off;
  315. lfs_size_t size;
  316. const void *data;
  317. };
  318. static int lfs_pair_commit(lfs_t *lfs, lfs_block_t pair[2],
  319. int count, const struct lfs_commit_region *regions) {
  320. uint32_t crc = 0xffffffff;
  321. int err = lfs_bd_erase(lfs, pair[1], 0, lfs->block_size);
  322. if (err) {
  323. return err;
  324. }
  325. lfs_off_t off = 0;
  326. while (off < lfs->block_size - 4) {
  327. if (count > 0 && regions[0].off == off) {
  328. crc = lfs_crc(regions[0].data, regions[0].size, crc);
  329. int err = lfs_bd_prog(lfs, pair[1],
  330. off, regions[0].size, regions[0].data);
  331. if (err) {
  332. return err;
  333. }
  334. off += regions[0].size;
  335. count -= 1;
  336. regions += 1;
  337. } else {
  338. // TODO faster strides?
  339. // TODO should we start crcing what's already
  340. // programmed after dir size?
  341. uint8_t data;
  342. int err = lfs_bd_read(lfs, pair[0], off, 1, &data);
  343. if (err) {
  344. return err;
  345. }
  346. crc = lfs_crc((void*)&data, 1, crc);
  347. err = lfs_bd_prog(lfs, pair[1], off, 1, &data);
  348. if (err) {
  349. return err;
  350. }
  351. off += 1;
  352. }
  353. }
  354. err = lfs_bd_prog(lfs, pair[1], lfs->block_size-4, 4, &crc);
  355. if (err) {
  356. return err;
  357. }
  358. err = lfs_bd_sync(lfs);
  359. if (err) {
  360. return err;
  361. }
  362. lfs_pairswap(pair);
  363. return 0;
  364. }
  365. // TODO maybe there is a better abstraction for this?
  366. static int lfs_pair_shift(lfs_t *lfs, lfs_block_t pair[2],
  367. int count, const struct lfs_commit_region *regions,
  368. lfs_off_t blank_start, lfs_size_t blank_size) {
  369. uint32_t crc = 0xffffffff;
  370. int err = lfs_bd_erase(lfs, pair[1], 0, lfs->block_size);
  371. if (err) {
  372. return err;
  373. }
  374. lfs_off_t woff = 0;
  375. lfs_off_t roff = 0;
  376. while (woff < lfs->block_size - 4) {
  377. if (count > 0 && regions[0].off == woff) {
  378. crc = lfs_crc(regions[0].data, regions[0].size, crc);
  379. int err = lfs_bd_prog(lfs, pair[1],
  380. woff, regions[0].size, regions[0].data);
  381. if (err) {
  382. return err;
  383. }
  384. woff += regions[0].size;
  385. roff += regions[0].size;
  386. count -= 1;
  387. regions += 1;
  388. } else if (roff == blank_start) {
  389. roff += blank_size;
  390. } else if (roff < lfs->block_size - 4) {
  391. // TODO faster strides?
  392. // TODO should we start crcing what's already
  393. // programmed after dir size?
  394. uint8_t data;
  395. int err = lfs_bd_read(lfs, pair[0], roff, 1, &data);
  396. if (err) {
  397. return err;
  398. }
  399. crc = lfs_crc((void*)&data, 1, crc);
  400. err = lfs_bd_prog(lfs, pair[1], woff, 1, &data);
  401. if (err) {
  402. return err;
  403. }
  404. woff += 1;
  405. roff += 1;
  406. } else {
  407. uint8_t data = 0;
  408. crc = lfs_crc((void*)&data, 1, crc);
  409. err = lfs_bd_prog(lfs, pair[1], woff, 1, &data);
  410. if (err) {
  411. return err;
  412. }
  413. woff += 1;
  414. }
  415. }
  416. err = lfs_bd_prog(lfs, pair[1], lfs->block_size-4, 4, &crc);
  417. if (err) {
  418. return err;
  419. }
  420. err = lfs_bd_sync(lfs);
  421. if (err) {
  422. return err;
  423. }
  424. lfs_pairswap(pair);
  425. return 0;
  426. }
  427. /// Directory operations ///
  428. static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir,
  429. lfs_block_t parent[2], lfs_block_t tail[2]) {
  430. // Allocate pair of dir blocks
  431. for (int i = 0; i < 2; i++) {
  432. int err = lfs_alloc(lfs, &dir->pair[i]);
  433. if (err) {
  434. return err;
  435. }
  436. }
  437. // Rather than clobbering one of the blocks we just pretend
  438. // the revision may be valid
  439. int err = lfs_bd_read(lfs, dir->pair[0], 0, 4, &dir->d.rev);
  440. if (err) {
  441. return err;
  442. }
  443. dir->d.rev += 1;
  444. // Calculate total size
  445. dir->d.size = sizeof(dir->d);
  446. dir->off = sizeof(dir->d);
  447. // Other defaults
  448. dir->d.tail[0] = tail[0];
  449. dir->d.tail[1] = tail[1];
  450. // Write out to memory
  451. if (!parent) {
  452. return lfs_pair_commit(lfs, dir->pair,
  453. 1, (struct lfs_commit_region[]){
  454. {0, sizeof(dir->d), &dir->d}
  455. });
  456. } else {
  457. dir->d.size += 2*sizeof(struct lfs_disk_entry) + 3;
  458. return lfs_pair_commit(lfs, dir->pair,
  459. 5, (struct lfs_commit_region[]){
  460. {0, sizeof(dir->d), &dir->d},
  461. {sizeof(dir->d), sizeof(struct lfs_disk_entry),
  462. &(struct lfs_disk_entry){
  463. .type = LFS_TYPE_DIR,
  464. .len = sizeof(struct lfs_disk_entry)+1,
  465. .u.dir[0] = dir->pair[0],
  466. .u.dir[1] = dir->pair[1],
  467. }},
  468. {sizeof(dir->d)+sizeof(struct lfs_disk_entry), 1, "."},
  469. {sizeof(dir->d)+sizeof(struct lfs_disk_entry)+1,
  470. sizeof(struct lfs_disk_entry),
  471. &(struct lfs_disk_entry){
  472. .type = LFS_TYPE_DIR,
  473. .len = sizeof(struct lfs_disk_entry)+2,
  474. .u.dir[0] = parent[0] ? parent[0] : dir->pair[0],
  475. .u.dir[1] = parent[1] ? parent[1] : dir->pair[1],
  476. }},
  477. {sizeof(dir->d)+2*sizeof(struct lfs_disk_entry)+1, 2, ".."},
  478. });
  479. }
  480. }
  481. static int lfs_dir_fetch(lfs_t *lfs, lfs_dir_t *dir, lfs_block_t pair[2]) {
  482. dir->pair[0] = pair[0];
  483. dir->pair[1] = pair[1];
  484. dir->off = sizeof(dir->d);
  485. return lfs_pair_fetch(lfs, dir->pair,
  486. 1, (struct lfs_fetch_region[1]) {
  487. {0, sizeof(dir->d), &dir->d}
  488. });
  489. }
  490. static int lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) {
  491. while (true) {
  492. if ((0x7fffffff & dir->d.size) - dir->off < sizeof(entry->d)) {
  493. if (!(dir->d.size >> 31)) {
  494. entry->dir[0] = dir->pair[0];
  495. entry->dir[1] = dir->pair[1];
  496. entry->off = dir->off;
  497. return LFS_ERROR_NO_ENTRY;
  498. }
  499. int err = lfs_dir_fetch(lfs, dir, dir->d.tail);
  500. if (err) {
  501. return err;
  502. }
  503. dir->off = sizeof(dir->d);
  504. }
  505. int err = lfs_bd_read(lfs, dir->pair[0], dir->off,
  506. sizeof(entry->d), &entry->d);
  507. if (err) {
  508. return err;
  509. }
  510. dir->off += entry->d.len;
  511. if (entry->d.type == LFS_TYPE_REG || entry->d.type == LFS_TYPE_DIR) {
  512. entry->dir[0] = dir->pair[0];
  513. entry->dir[1] = dir->pair[1];
  514. entry->off = dir->off - entry->d.len;
  515. return 0;
  516. }
  517. }
  518. }
  519. static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir,
  520. const char **path, lfs_entry_t *entry) {
  521. while (true) {
  522. const char *pathname = *path;
  523. lfs_size_t pathlen = strcspn(pathname, "/");
  524. while (true) {
  525. int err = lfs_dir_next(lfs, dir, entry);
  526. if (err) {
  527. return err;
  528. }
  529. if (entry->d.len - sizeof(entry->d) != pathlen) {
  530. continue;
  531. }
  532. int ret = lfs_bd_cmp(lfs, entry->dir[0],
  533. entry->off + sizeof(entry->d), pathlen, pathname);
  534. if (ret < 0) {
  535. return ret;
  536. }
  537. // Found match
  538. if (ret == true) {
  539. break;
  540. }
  541. }
  542. pathname += pathlen;
  543. pathname += strspn(pathname, "/");
  544. if (pathname[0] == '\0') {
  545. return 0;
  546. }
  547. if (entry->d.type != LFS_TYPE_DIR) {
  548. return LFS_ERROR_NOT_DIR;
  549. }
  550. int err = lfs_dir_fetch(lfs, dir, entry->d.u.dir);
  551. if (err) {
  552. return err;
  553. }
  554. *path = pathname;
  555. }
  556. return 0;
  557. }
  558. static int lfs_dir_append(lfs_t *lfs, lfs_dir_t *dir,
  559. const char **path, lfs_entry_t *entry) {
  560. int err = lfs_dir_find(lfs, dir, path, entry);
  561. if (err != LFS_ERROR_NO_ENTRY) {
  562. return err ? err : LFS_ERROR_EXISTS;
  563. }
  564. // Check if we fit
  565. if ((0x7fffffff & dir->d.size) + sizeof(entry->d) + strlen(*path)
  566. > lfs->block_size - 4) {
  567. lfs_dir_t olddir;
  568. memcpy(&olddir, dir, sizeof(olddir));
  569. int err = lfs_dir_alloc(lfs, dir, 0, olddir.d.tail);
  570. if (err) {
  571. return err;
  572. }
  573. entry->dir[0] = dir->pair[0];
  574. entry->dir[1] = dir->pair[1];
  575. entry->off = dir->off;
  576. olddir.d.rev += 1;
  577. olddir.d.size |= 1 << 31;
  578. olddir.d.tail[0] = dir->pair[0];
  579. olddir.d.tail[1] = dir->pair[1];
  580. return lfs_pair_commit(lfs, olddir.pair,
  581. 1, (struct lfs_commit_region[]){
  582. {0, sizeof(olddir.d), &olddir.d}
  583. });
  584. }
  585. return 0;
  586. }
  587. int lfs_mkdir(lfs_t *lfs, const char *path) {
  588. // Allocate entry for directory
  589. lfs_dir_t cwd;
  590. int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd);
  591. if (err) {
  592. return err;
  593. }
  594. lfs_entry_t entry;
  595. err = lfs_dir_append(lfs, &cwd, &path, &entry);
  596. if (err) {
  597. return err;
  598. }
  599. // Build up new directory
  600. lfs_dir_t dir;
  601. err = lfs_dir_alloc(lfs, &dir, cwd.pair, cwd.d.tail);
  602. if (err) {
  603. return err;
  604. }
  605. entry.d.type = LFS_TYPE_DIR;
  606. entry.d.len = sizeof(entry.d) + strlen(path);
  607. entry.d.u.dir[0] = dir.pair[0];
  608. entry.d.u.dir[1] = dir.pair[1];
  609. cwd.d.rev += 1;
  610. cwd.d.size += entry.d.len;
  611. cwd.d.tail[0] = dir.pair[0];
  612. cwd.d.tail[1] = dir.pair[1];
  613. return lfs_pair_commit(lfs, entry.dir,
  614. 3, (struct lfs_commit_region[3]) {
  615. {0, sizeof(cwd.d), &cwd.d},
  616. {entry.off, sizeof(entry.d), &entry.d},
  617. {entry.off+sizeof(entry.d), entry.d.len - sizeof(entry.d), path}
  618. });
  619. }
  620. int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
  621. if (path[0] == '/') {
  622. dir->pair[0] = lfs->root[0];
  623. dir->pair[1] = lfs->root[1];
  624. } else {
  625. dir->pair[0] = lfs->cwd[0];
  626. dir->pair[1] = lfs->cwd[1];
  627. }
  628. int err = lfs_dir_fetch(lfs, dir, dir->pair);
  629. if (err) {
  630. return err;
  631. } else if (strcmp(path, "/") == 0) {
  632. return 0;
  633. }
  634. lfs_entry_t entry;
  635. err = lfs_dir_find(lfs, dir, &path, &entry);
  636. if (err) {
  637. return err;
  638. } else if (entry.d.type != LFS_TYPE_DIR) {
  639. return LFS_ERROR_NOT_DIR;
  640. }
  641. return lfs_dir_fetch(lfs, dir, entry.d.u.dir);
  642. }
  643. int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
  644. // Do nothing, dir is always synchronized
  645. return 0;
  646. }
  647. int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
  648. memset(info, 0, sizeof(*info));
  649. lfs_entry_t entry;
  650. int err = lfs_dir_next(lfs, dir, &entry);
  651. if (err) {
  652. return (err == LFS_ERROR_NO_ENTRY) ? 0 : err;
  653. }
  654. info->type = entry.d.type & 0xff;
  655. if (info->type == LFS_TYPE_REG) {
  656. info->size = entry.d.u.file.size;
  657. }
  658. err = lfs_bd_read(lfs, entry.dir[0], entry.off + sizeof(entry.d),
  659. entry.d.len - sizeof(entry.d), info->name);
  660. if (err) {
  661. return err;
  662. }
  663. return 1;
  664. }
  665. /// File operations ///
  666. int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
  667. const char *path, int flags) {
  668. // Allocate entry for file if it doesn't exist
  669. // TODO check open files
  670. lfs_dir_t cwd;
  671. int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd);
  672. if (err) {
  673. return err;
  674. }
  675. if (flags & LFS_O_CREAT) {
  676. err = lfs_dir_append(lfs, &cwd, &path, &file->entry);
  677. if (err && err != LFS_ERROR_EXISTS) {
  678. return err;
  679. }
  680. } else {
  681. err = lfs_dir_find(lfs, &cwd, &path, &file->entry);
  682. if (err) {
  683. return err;
  684. }
  685. }
  686. if ((flags & LFS_O_CREAT) && err != LFS_ERROR_EXISTS) {
  687. // Store file
  688. file->head = 0;
  689. file->size = 0;
  690. file->wblock = 0;
  691. file->windex = 0;
  692. file->rblock = 0;
  693. file->rindex = 0;
  694. file->roff = 0;
  695. file->entry.d.type = 1;
  696. file->entry.d.len = sizeof(file->entry.d) + strlen(path);
  697. file->entry.d.u.file.head = file->head;
  698. file->entry.d.u.file.size = file->size;
  699. cwd.d.rev += 1;
  700. cwd.d.size += file->entry.d.len;
  701. return lfs_pair_commit(lfs, file->entry.dir,
  702. 3, (struct lfs_commit_region[3]) {
  703. {0, sizeof(cwd.d), &cwd.d},
  704. {file->entry.off,
  705. sizeof(file->entry.d),
  706. &file->entry.d},
  707. {file->entry.off+sizeof(file->entry.d),
  708. file->entry.d.len-sizeof(file->entry.d),
  709. path}
  710. });
  711. } else if (file->entry.d.type == LFS_TYPE_DIR) {
  712. return LFS_ERROR_IS_DIR;
  713. } else {
  714. file->head = file->entry.d.u.file.head;
  715. file->size = file->entry.d.u.file.size;
  716. file->windex = lfs_indexfrom(lfs, file->size);
  717. file->rblock = 0;
  718. file->rindex = 0;
  719. file->roff = 0;
  720. // TODO do this lazily in write?
  721. // TODO cow the head i/d block
  722. if (file->size < lfs->block_size) {
  723. file->wblock = file->head;
  724. } else {
  725. int err = lfs_index_find(lfs, file->head, file->windex,
  726. file->windex, &file->wblock);
  727. if (err) {
  728. return err;
  729. }
  730. }
  731. return 0;
  732. }
  733. }
  734. int lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
  735. // Store file
  736. lfs_dir_t cwd;
  737. int err = lfs_dir_fetch(lfs, &cwd, file->entry.dir);
  738. if (err) {
  739. return err;
  740. }
  741. file->entry.d.u.file.head = file->head;
  742. file->entry.d.u.file.size = file->size;
  743. cwd.d.rev += 1;
  744. return lfs_pair_commit(lfs, file->entry.dir,
  745. 3, (struct lfs_commit_region[3]) {
  746. {0, sizeof(cwd.d), &cwd.d},
  747. {file->entry.off, sizeof(file->entry.d), &file->entry.d},
  748. });
  749. }
  750. lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
  751. const void *buffer, lfs_size_t size) {
  752. const uint8_t *data = buffer;
  753. lfs_size_t nsize = size;
  754. while (nsize > 0) {
  755. lfs_off_t woff = file->size % lfs->block_size;
  756. if (file->size == 0) {
  757. int err = lfs_alloc_erased(lfs, &file->wblock);
  758. if (err) {
  759. return err;
  760. }
  761. file->head = file->wblock;
  762. file->windex = 0;
  763. } else if (woff == 0) {
  764. int err = lfs_alloc_erased(lfs, &file->wblock);
  765. if (err) {
  766. return err;
  767. }
  768. err = lfs_index_append(lfs, &file->head,
  769. &file->windex, file->wblock);
  770. if (err) {
  771. return err;
  772. }
  773. }
  774. lfs_size_t diff = lfs_min(nsize, lfs->block_size - woff);
  775. int err = lfs_bd_prog(lfs, file->wblock, woff, diff, data);
  776. if (err) {
  777. return err;
  778. }
  779. file->size += diff;
  780. data += diff;
  781. nsize -= diff;
  782. }
  783. return size;
  784. }
  785. lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
  786. void *buffer, lfs_size_t size) {
  787. uint8_t *data = buffer;
  788. lfs_size_t nsize = size;
  789. while (nsize > 0 && file->roff < file->size) {
  790. lfs_off_t roff = file->roff % lfs->block_size;
  791. // TODO cache index blocks
  792. if (file->size < lfs->block_size) {
  793. file->rblock = file->head;
  794. } else if (roff == 0) {
  795. int err = lfs_index_find(lfs, file->head, file->windex,
  796. file->rindex, &file->rblock);
  797. if (err) {
  798. return err;
  799. }
  800. file->rindex = lfs_indexnext(lfs, file->rindex);
  801. }
  802. lfs_size_t diff = lfs_min(
  803. lfs_min(nsize, file->size-file->roff),
  804. lfs->block_size - roff);
  805. int err = lfs_bd_read(lfs, file->rblock, roff, diff, data);
  806. if (err) {
  807. return err;
  808. }
  809. file->roff += diff;
  810. data += diff;
  811. nsize -= diff;
  812. }
  813. return size - nsize;
  814. }
  815. /// Generic filesystem operations ///
  816. static int lfs_configure(lfs_t *lfs, const struct lfs_config *config) {
  817. lfs->bd = config->bd;
  818. lfs->bd_ops = config->bd_ops;
  819. struct lfs_bd_info info;
  820. int err = lfs_bd_info(lfs, &info);
  821. if (err) {
  822. return err;
  823. }
  824. if (config->read_size) {
  825. if (config->read_size < info.read_size ||
  826. config->read_size % info.read_size != 0) {
  827. LFS_ERROR("Invalid read size %u, device has %u\n",
  828. config->read_size, info.read_size);
  829. return LFS_ERROR_INVALID;
  830. }
  831. lfs->read_size = config->read_size;
  832. } else {
  833. lfs->read_size = info.read_size;
  834. }
  835. if (config->prog_size) {
  836. if (config->prog_size < info.prog_size ||
  837. config->prog_size % info.prog_size != 0) {
  838. LFS_ERROR("Invalid prog size %u, device has %u\n",
  839. config->prog_size, info.prog_size);
  840. return LFS_ERROR_INVALID;
  841. }
  842. lfs->prog_size = config->prog_size;
  843. } else {
  844. lfs->prog_size = info.prog_size;
  845. }
  846. if (config->block_size) {
  847. if (config->block_size < info.erase_size ||
  848. config->block_size % info.erase_size != 0) {
  849. LFS_ERROR("Invalid block size %u, device has %u\n",
  850. config->prog_size, info.prog_size);
  851. return LFS_ERROR_INVALID;
  852. }
  853. lfs->block_size = config->block_size;
  854. } else {
  855. lfs->block_size = lfs_min(512, info.erase_size);
  856. }
  857. if (config->block_count) {
  858. if (config->block_count > info.total_size/info.erase_size) {
  859. LFS_ERROR("Invalid block size %u, device has %u\n",
  860. config->block_size,
  861. (uint32_t)(info.total_size/info.erase_size));
  862. return LFS_ERROR_INVALID;
  863. }
  864. lfs->block_count = config->block_count;
  865. } else {
  866. lfs->block_count = info.total_size / info.erase_size;
  867. }
  868. lfs->words = lfs->block_size / sizeof(uint32_t);
  869. return 0;
  870. }
  871. int lfs_format(lfs_t *lfs, const struct lfs_config *config) {
  872. int err = lfs_configure(lfs, config);
  873. if (err) {
  874. return err;
  875. }
  876. // Create free list
  877. lfs->free.begin = 2;
  878. lfs->free.end = lfs->block_count-1;
  879. // Write root directory
  880. lfs_dir_t root;
  881. err = lfs_dir_alloc(lfs, &root,
  882. (lfs_block_t[2]){0, 0}, (lfs_block_t[2]){0, 0});
  883. if (err) {
  884. return err;
  885. }
  886. lfs->root[0] = root.pair[0];
  887. lfs->root[1] = root.pair[1];
  888. lfs->cwd[0] = root.pair[0];
  889. lfs->cwd[1] = root.pair[1];
  890. // Write superblocks
  891. lfs_superblock_t superblock = {
  892. .pair = {0, 1},
  893. .d.rev = 1,
  894. .d.size = sizeof(superblock),
  895. .d.root = {lfs->cwd[0], lfs->cwd[1]},
  896. .d.magic = {"littlefs"},
  897. .d.block_size = lfs->block_size,
  898. .d.block_count = lfs->block_count,
  899. };
  900. for (int i = 0; i < 2; i++) {
  901. int err = lfs_pair_commit(lfs, superblock.pair,
  902. 1, (struct lfs_commit_region[]){
  903. {0, sizeof(superblock.d), &superblock.d}
  904. });
  905. if (err) {
  906. LFS_ERROR("Failed to write superblock at %d", superblock.pair[1]);
  907. return err;
  908. }
  909. uint32_t crc = 0xffffffff;
  910. err = lfs_bd_crc(lfs, superblock.pair[0], 0, lfs->block_size, &crc);
  911. if (err || crc != 0) {
  912. LFS_ERROR("Failed to write superblock at %d", superblock.pair[0]);
  913. return err ? err : LFS_ERROR_CORRUPT;
  914. }
  915. }
  916. return 0;
  917. }
  918. int lfs_mount(lfs_t *lfs, const struct lfs_config *config) {
  919. int err = lfs_configure(lfs, config);
  920. if (err) {
  921. return err;
  922. }
  923. lfs_superblock_t superblock = {
  924. .pair = {0, 1},
  925. };
  926. err = lfs_pair_fetch(lfs, superblock.pair,
  927. 1, (struct lfs_fetch_region[]){
  928. {0, sizeof(superblock.d), &superblock.d}
  929. });
  930. if ((err == LFS_ERROR_CORRUPT ||
  931. memcmp(superblock.d.magic, "littlefs", 8) != 0)) {
  932. LFS_ERROR("Invalid superblock at %d %d",
  933. superblock.pair[0], superblock.pair[1]);
  934. return LFS_ERROR_CORRUPT;
  935. }
  936. lfs->root[0] = superblock.d.root[0];
  937. lfs->root[1] = superblock.d.root[1];
  938. lfs->cwd[0] = superblock.d.root[0];
  939. lfs->cwd[1] = superblock.d.root[1];
  940. return err;
  941. }
  942. int lfs_unmount(lfs_t *lfs) {
  943. // Do nothing for now
  944. return 0;
  945. }
  946. static int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) {
  947. // iterate over metadata pairs
  948. lfs_dir_t dir;
  949. lfs_file_t file;
  950. lfs_block_t cwd[2] = {0, 1};
  951. while (true) {
  952. for (int i = 0; i < 2; i++) {
  953. int err = cb(data, cwd[i]);
  954. if (err) {
  955. return err;
  956. }
  957. }
  958. int err = lfs_dir_fetch(lfs, &dir, cwd);
  959. if (err) {
  960. return err;
  961. }
  962. // skip '.' and '..'
  963. dir.off += 2*sizeof(struct lfs_disk_entry) + 3;
  964. // iterate over contents
  965. while ((0x7fffffff & dir.d.size) >= dir.off + sizeof(file.entry.d)) {
  966. int err = lfs_bd_read(lfs, dir.pair[0], dir.off,
  967. sizeof(file.entry.d), &file.entry.d);
  968. if (err) {
  969. return err;
  970. }
  971. dir.off += file.entry.d.len;
  972. if ((0xf & file.entry.d.type) == LFS_TYPE_REG) {
  973. if (file.entry.d.u.file.size < lfs->block_size) {
  974. int err = cb(data, file.entry.d.u.file.head);
  975. if (err) {
  976. return err;
  977. }
  978. } else {
  979. int err = lfs_index_traverse(lfs,
  980. file.entry.d.u.file.head,
  981. lfs_indexfrom(lfs, file.entry.d.u.file.size),
  982. cb, data);
  983. if (err) {
  984. return err;
  985. }
  986. }
  987. }
  988. }
  989. cwd[0] = dir.d.tail[0];
  990. cwd[1] = dir.d.tail[1];
  991. if (!cwd[0]) {
  992. return 0;
  993. }
  994. }
  995. }
  996. int lfs_deorphan(lfs_t *lfs) {
  997. // iterate over all directories
  998. lfs_block_t pred[2] = {0, 1};
  999. lfs_block_t cwd[2] = {lfs->root[0], lfs->root[1]};
  1000. while (true) {
  1001. lfs_dir_t child;
  1002. int err = lfs_dir_fetch(lfs, &child, cwd);
  1003. if (err) {
  1004. return err;
  1005. }
  1006. // orphans can only be empty dirs
  1007. // there still might be a dir block with this size that isn't
  1008. // the head of a directory, so we still have to check for '..'
  1009. if (child.d.size == sizeof(child.d) +
  1010. 2*sizeof(struct lfs_disk_entry) + 3) {
  1011. lfs_entry_t entry;
  1012. err = lfs_dir_find(lfs, &child, &(const char*){".."}, &entry);
  1013. if (err && err != LFS_ERROR_NO_ENTRY) {
  1014. return err;
  1015. }
  1016. // only the head of directories can be orphans
  1017. if (err != LFS_ERROR_NO_ENTRY) {
  1018. lfs_dir_t dir;
  1019. int err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir);
  1020. if (err) {
  1021. return err;
  1022. }
  1023. // check if we are any of our parents children
  1024. while (true) {
  1025. int err = lfs_dir_next(lfs, &dir, &entry);
  1026. if (err && err != LFS_ERROR_NO_ENTRY) {
  1027. return err;
  1028. }
  1029. if (err == LFS_ERROR_NO_ENTRY) {
  1030. // we are an orphan
  1031. LFS_INFO("Found orphan %d %d", cwd[0], cwd[1]);
  1032. int err = lfs_dir_fetch(lfs, &dir, pred);
  1033. if (err) {
  1034. return err;
  1035. }
  1036. dir.d.tail[0] = child.d.tail[0];
  1037. dir.d.tail[1] = child.d.tail[1];
  1038. dir.d.rev += 1;
  1039. err = lfs_pair_commit(lfs, dir.pair,
  1040. 1, (struct lfs_commit_region[]) {
  1041. {0, sizeof(dir.d), &dir.d},
  1042. });
  1043. if (err) {
  1044. return err;
  1045. }
  1046. break;
  1047. } else if (lfs_paircmp(entry.d.u.dir, cwd) == 0) {
  1048. // has parent
  1049. break;
  1050. }
  1051. }
  1052. }
  1053. }
  1054. // to next directory
  1055. pred[0] = cwd[0];
  1056. pred[1] = cwd[1];
  1057. cwd[0] = child.d.tail[0];
  1058. cwd[1] = child.d.tail[1];
  1059. if (!cwd[0]) {
  1060. return 0;
  1061. }
  1062. }
  1063. }
  1064. int lfs_remove(lfs_t *lfs, const char *path) {
  1065. lfs_dir_t cwd;
  1066. int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd);
  1067. if (err) {
  1068. return err;
  1069. }
  1070. lfs_entry_t entry;
  1071. err = lfs_dir_find(lfs, &cwd, &path, &entry);
  1072. if (err) {
  1073. return err;
  1074. }
  1075. lfs_dir_t dir;
  1076. if (entry.d.type == LFS_TYPE_DIR) {
  1077. // must be empty before removal
  1078. int err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir);
  1079. if (err) {
  1080. return err;
  1081. } else if (dir.d.size != sizeof(dir.d) +
  1082. 2*sizeof(struct lfs_disk_entry) + 3) {
  1083. return LFS_ERROR_INVALID;
  1084. }
  1085. }
  1086. cwd.d.rev += 1;
  1087. cwd.d.size -= entry.d.len;
  1088. // either shift out the one entry or remove the whole dir block
  1089. if (cwd.d.size == sizeof(dir.d)) {
  1090. lfs_dir_t pdir;
  1091. int err = lfs_dir_fetch(lfs, &pdir, lfs->cwd);
  1092. if (err) {
  1093. return err;
  1094. }
  1095. while (lfs_paircmp(pdir.d.tail, cwd.pair) != 0) {
  1096. int err = lfs_dir_fetch(lfs, &pdir, pdir.d.tail);
  1097. if (err) {
  1098. return err;
  1099. }
  1100. }
  1101. pdir.d.tail[0] = cwd.d.tail[0];
  1102. pdir.d.tail[1] = cwd.d.tail[1];
  1103. pdir.d.rev += 1;
  1104. err = lfs_pair_commit(lfs, pdir.pair,
  1105. 1, (struct lfs_commit_region[]) {
  1106. {0, sizeof(pdir.d), &pdir.d},
  1107. });
  1108. if (err) {
  1109. return err;
  1110. }
  1111. } else {
  1112. int err = lfs_pair_shift(lfs, entry.dir,
  1113. 1, (struct lfs_commit_region[]) {
  1114. {0, sizeof(cwd.d), &cwd.d},
  1115. },
  1116. entry.off, entry.d.len);
  1117. if (err) {
  1118. return err;
  1119. }
  1120. }
  1121. if (entry.d.type == LFS_TYPE_DIR) {
  1122. // remove ourselves from the dir list
  1123. // this may create an orphan, which must be deorphaned
  1124. lfs_dir_t pdir;
  1125. memcpy(&pdir, &cwd, sizeof(pdir));
  1126. while (pdir.d.tail[0]) {
  1127. if (lfs_paircmp(pdir.d.tail, entry.d.u.dir) == 0) {
  1128. pdir.d.tail[0] = dir.d.tail[0];
  1129. pdir.d.tail[1] = dir.d.tail[1];
  1130. pdir.d.rev += 1;
  1131. int err = lfs_pair_commit(lfs, pdir.pair,
  1132. 1, (struct lfs_commit_region[]) {
  1133. {0, sizeof(pdir.d), &pdir.d},
  1134. });
  1135. if (err) {
  1136. return err;
  1137. }
  1138. break;
  1139. }
  1140. int err = lfs_dir_fetch(lfs, &pdir, pdir.d.tail);
  1141. if (err) {
  1142. return err;
  1143. }
  1144. }
  1145. }
  1146. return 0;
  1147. }
  1148. int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) {
  1149. lfs_dir_t cwd;
  1150. int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd);
  1151. if (err) {
  1152. return err;
  1153. }
  1154. lfs_entry_t entry;
  1155. err = lfs_dir_find(lfs, &cwd, &path, &entry);
  1156. if (err) {
  1157. return err;
  1158. }
  1159. // TODO abstract out info assignment
  1160. memset(info, 0, sizeof(*info));
  1161. info->type = entry.d.type & 0xff;
  1162. if (info->type == LFS_TYPE_REG) {
  1163. info->size = entry.d.u.file.size;
  1164. }
  1165. err = lfs_bd_read(lfs, entry.dir[0], entry.off + sizeof(entry.d),
  1166. entry.d.len - sizeof(entry.d), info->name);
  1167. if (err) {
  1168. return err;
  1169. }
  1170. return 0;
  1171. }