lfs.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255
  1. /*
  2. * The little filesystem
  3. *
  4. * Copyright (c) 2017 Christopher Haster
  5. * Distributed under the MIT license
  6. */
  7. #include "lfs.h"
  8. #include "lfs_util.h"
  9. #include <string.h>
  10. #include <stdbool.h>
  11. /// Block device operations ///
  12. static int lfs_bd_info(lfs_t *lfs, struct lfs_bd_info *info) {
  13. return lfs->bd_ops->info(lfs->bd, info);
  14. }
  15. static int lfs_bd_read(lfs_t *lfs, lfs_block_t block,
  16. lfs_off_t off, lfs_size_t size, void *buffer) {
  17. return lfs->bd_ops->read(lfs->bd, block, off, size, buffer);
  18. }
  19. static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block,
  20. lfs_off_t off, lfs_size_t size, const void *buffer) {
  21. return lfs->bd_ops->prog(lfs->bd, block, off, size, buffer);
  22. }
  23. static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block,
  24. lfs_off_t off, lfs_size_t size) {
  25. return lfs->bd_ops->erase(lfs->bd, block, off, size);
  26. }
  27. static int lfs_bd_sync(lfs_t *lfs) {
  28. return lfs->bd_ops->sync(lfs->bd);
  29. }
  30. static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block,
  31. lfs_off_t off, lfs_size_t size, const void *buffer) {
  32. const uint8_t *data = buffer;
  33. for (lfs_off_t i = 0; i < size; i++) {
  34. uint8_t c;
  35. int err = lfs_bd_read(lfs, block, off+i, 1, &c);
  36. if (err) {
  37. return err;
  38. }
  39. if (c != *data) {
  40. return false;
  41. }
  42. data += 1;
  43. }
  44. return true;
  45. }
  46. static int lfs_bd_crc(lfs_t *lfs, lfs_block_t block,
  47. lfs_off_t off, lfs_size_t size, uint32_t *crc) {
  48. while (off < size) {
  49. uint8_t c;
  50. int err = lfs_bd_read(lfs, block, off, 1, &c);
  51. if (err) {
  52. return err;
  53. }
  54. *crc = lfs_crc(&c, 1, *crc);
  55. off += 1;
  56. }
  57. return 0;
  58. }
  59. /// Block allocator ///
  60. // predeclared filesystem traversal
  61. static int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data);
  62. static int lfs_alloc_lookahead(void *p, lfs_block_t block) {
  63. lfs_t *lfs = p;
  64. lfs_block_t off = block - lfs->free.begin;
  65. if (off < LFS_CFG_LOOKAHEAD) {
  66. lfs->lookahead[off / 32] |= 1U << (off % 32);
  67. }
  68. return 0;
  69. }
  70. static int lfs_alloc_stride(void *p, lfs_block_t block) {
  71. lfs_t *lfs = p;
  72. lfs_block_t noff = block - lfs->free.begin;
  73. lfs_block_t off = lfs->free.end - lfs->free.begin;
  74. if (noff < off) {
  75. lfs->free.end = noff + lfs->free.begin;
  76. }
  77. return 0;
  78. }
  79. static int lfs_alloc_scan(lfs_t *lfs) {
  80. lfs_block_t start = lfs->free.begin;
  81. while (true) {
  82. // mask out blocks in lookahead region
  83. memset(lfs->lookahead, 0, sizeof(lfs->lookahead));
  84. int err = lfs_traverse(lfs, lfs_alloc_lookahead, lfs);
  85. if (err) {
  86. return err;
  87. }
  88. // check if we've found a free block
  89. for (uint32_t off = 0; off < LFS_CFG_LOOKAHEAD; off++) {
  90. if (lfs->lookahead[off / 32] & (1U << (off % 32))) {
  91. continue;
  92. }
  93. // found free block, now find stride of free blocks
  94. // since this is relatively cheap (stress on relatively)
  95. lfs->free.begin += off;
  96. lfs->free.end = lfs->block_count; // before superblock
  97. // find maximum stride in tree
  98. return lfs_traverse(lfs, lfs_alloc_stride, lfs);
  99. }
  100. // continue to next lookahead unless we've searched the whole device
  101. if (start-1 - lfs->free.begin < LFS_CFG_LOOKAHEAD) {
  102. return 0;
  103. }
  104. // continue to next lookahead region
  105. lfs->free.begin += LFS_CFG_LOOKAHEAD;
  106. }
  107. }
  108. static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) {
  109. // If we don't remember any free blocks we will need to start searching
  110. if (lfs->free.begin == lfs->free.end) {
  111. int err = lfs_alloc_scan(lfs);
  112. if (err) {
  113. return err;
  114. } else if (lfs->free.begin == lfs->free.end) {
  115. return LFS_ERROR_NO_SPACE;
  116. }
  117. }
  118. // Take first available block
  119. *block = lfs->free.begin;
  120. lfs->free.begin += 1;
  121. return 0;
  122. }
  123. static int lfs_alloc_erased(lfs_t *lfs, lfs_block_t *block) {
  124. int err = lfs_alloc(lfs, block);
  125. if (err) {
  126. return err;
  127. }
  128. return lfs_bd_erase(lfs, *block, 0, lfs->block_size);
  129. }
  130. /// Index list operations ///
  131. // Next index offset
  132. static lfs_off_t lfs_indexnext(lfs_t *lfs, lfs_off_t ioff) {
  133. ioff += 1;
  134. while (ioff % lfs->words == 0) {
  135. ioff += lfs_min(lfs_ctz(ioff/lfs->words + 1), lfs->words-1) + 1;
  136. }
  137. return ioff;
  138. }
  139. static lfs_off_t lfs_indexfrom(lfs_t *lfs, lfs_off_t off) {
  140. lfs_off_t i = 0;
  141. while (off > lfs->block_size) {
  142. i = lfs_indexnext(lfs, i);
  143. off -= lfs->block_size;
  144. }
  145. return i;
  146. }
  147. // Find index in index chain given its index offset
  148. static int lfs_index_find(lfs_t *lfs, lfs_block_t head,
  149. lfs_size_t icount, lfs_off_t ioff, lfs_block_t *block) {
  150. lfs_off_t iitarget = ioff / lfs->words;
  151. lfs_off_t iicurrent = (icount-1) / lfs->words;
  152. while (iitarget != iicurrent) {
  153. lfs_size_t skip = lfs_min(
  154. lfs_min(lfs_ctz(iicurrent+1), lfs->words-1),
  155. lfs_npw2((iitarget ^ iicurrent)+1)-1);
  156. int err = lfs_bd_read(lfs, head, 4*skip, 4, &head);
  157. if (err) {
  158. return err;
  159. }
  160. iicurrent -= 1 << skip;
  161. }
  162. return lfs_bd_read(lfs, head, 4*(ioff % lfs->words), 4, block);
  163. }
  164. // Append index to index chain, updates head and icount
  165. static int lfs_index_append(lfs_t *lfs, lfs_block_t *headp,
  166. lfs_size_t *icountp, lfs_block_t block) {
  167. lfs_block_t head = *headp;
  168. lfs_size_t ioff = *icountp - 1;
  169. ioff += 1;
  170. while (ioff % lfs->words == 0) {
  171. lfs_block_t nhead;
  172. int err = lfs_alloc_erased(lfs, &nhead);
  173. if (err) {
  174. return err;
  175. }
  176. lfs_off_t skips = lfs_min(
  177. lfs_ctz(ioff/lfs->words + 1), lfs->words-2) + 1;
  178. for (lfs_off_t i = 0; i < skips; i++) {
  179. err = lfs_bd_prog(lfs, nhead, 4*i, 4, &head);
  180. if (err) {
  181. return err;
  182. }
  183. if (head && i != skips-1) {
  184. err = lfs_bd_read(lfs, head, 4*i, 4, &head);
  185. if (err) {
  186. return err;
  187. }
  188. }
  189. }
  190. ioff += skips;
  191. head = nhead;
  192. }
  193. int err = lfs_bd_prog(lfs, head, 4*(ioff % lfs->words), 4, &block);
  194. if (err) {
  195. return err;
  196. }
  197. *headp = head;
  198. *icountp = ioff + 1;
  199. return 0;
  200. }
  201. static int lfs_index_traverse(lfs_t *lfs, lfs_block_t head,
  202. lfs_size_t icount, int (*cb)(void*, lfs_block_t), void *data) {
  203. lfs_off_t iicurrent = (icount-1) / lfs->words;
  204. while (iicurrent > 0) {
  205. int err = cb(data, head);
  206. if (err) {
  207. return err;
  208. }
  209. lfs_size_t skip = lfs_min(lfs_ctz(iicurrent+1), lfs->words-1);
  210. for (lfs_off_t i = skip; i < lfs->words; i++) {
  211. lfs_block_t block;
  212. int err = lfs_bd_read(lfs, head, 4*i, 4, &block);
  213. if (err) {
  214. return err;
  215. }
  216. err = cb(data, block);
  217. if (err) {
  218. return err;
  219. }
  220. }
  221. err = lfs_bd_read(lfs, head, 0, 4, &head);
  222. if (err) {
  223. return err;
  224. }
  225. iicurrent -= 1;
  226. }
  227. int err = cb(data, head);
  228. if (err) {
  229. return err;
  230. }
  231. for (lfs_off_t i = 0; i < lfs->words; i++) {
  232. lfs_block_t block;
  233. int err = lfs_bd_read(lfs, head, 4*i, 4, &block);
  234. if (err) {
  235. return err;
  236. }
  237. err = cb(data, block);
  238. if (err) {
  239. return err;
  240. }
  241. }
  242. return 0;
  243. }
  244. /// Metadata pair operations ///
  245. static inline void lfs_pairswap(lfs_block_t pair[2]) {
  246. lfs_block_t t = pair[0];
  247. pair[0] = pair[1];
  248. pair[1] = t;
  249. }
  250. static inline int lfs_paircmp(
  251. const lfs_block_t paira[2],
  252. const lfs_block_t pairb[2]) {
  253. return !((paira[0] == pairb[0] && paira[1] == pairb[1]) ||
  254. (paira[0] == pairb[1] && paira[1] == pairb[0]));
  255. }
  256. struct lfs_fetch_region {
  257. lfs_off_t off;
  258. lfs_size_t size;
  259. void *data;
  260. };
  261. static int lfs_pair_fetch(lfs_t *lfs, lfs_block_t pair[2],
  262. int count, const struct lfs_fetch_region *regions) {
  263. int checked = 0;
  264. int rev = 0;
  265. for (int i = 0; i < 2; i++) {
  266. uint32_t nrev;
  267. int err = lfs_bd_read(lfs, pair[1], 0, 4, &nrev);
  268. if (err) {
  269. return err;
  270. }
  271. if (checked > 0 && lfs_scmp(nrev, rev) < 0) {
  272. continue;
  273. }
  274. uint32_t crc = 0xffffffff;
  275. err = lfs_bd_crc(lfs, pair[1], 0, lfs->block_size, &crc);
  276. if (err) {
  277. return err;
  278. }
  279. if (crc != 0) {
  280. lfs_pairswap(pair);
  281. }
  282. checked += 1;
  283. rev = nrev;
  284. lfs_pairswap(pair);
  285. }
  286. if (checked == 0) {
  287. LFS_ERROR("Corrupted metadata pair at %d %d", pair[0], pair[1]);
  288. return LFS_ERROR_CORRUPT;
  289. }
  290. for (int i = 0; i < count; i++) {
  291. int err = lfs_bd_read(lfs, pair[0],
  292. regions[i].off, regions[i].size, regions[i].data);
  293. if (err) {
  294. return err;
  295. }
  296. }
  297. return 0;
  298. }
  299. struct lfs_commit_region {
  300. lfs_off_t off;
  301. lfs_size_t size;
  302. const void *data;
  303. };
  304. static int lfs_pair_commit(lfs_t *lfs, lfs_block_t pair[2],
  305. int count, const struct lfs_commit_region *regions) {
  306. uint32_t crc = 0xffffffff;
  307. int err = lfs_bd_erase(lfs, pair[1], 0, lfs->block_size);
  308. if (err) {
  309. return err;
  310. }
  311. lfs_off_t off = 0;
  312. while (off < lfs->block_size - 4) {
  313. if (count > 0 && regions[0].off == off) {
  314. crc = lfs_crc(regions[0].data, regions[0].size, crc);
  315. int err = lfs_bd_prog(lfs, pair[1],
  316. off, regions[0].size, regions[0].data);
  317. if (err) {
  318. return err;
  319. }
  320. off += regions[0].size;
  321. count -= 1;
  322. regions += 1;
  323. } else {
  324. // TODO faster strides?
  325. // TODO should we start crcing what's already
  326. // programmed after dir size?
  327. uint8_t data;
  328. int err = lfs_bd_read(lfs, pair[0], off, 1, &data);
  329. if (err) {
  330. return err;
  331. }
  332. crc = lfs_crc((void*)&data, 1, crc);
  333. err = lfs_bd_prog(lfs, pair[1], off, 1, &data);
  334. if (err) {
  335. return err;
  336. }
  337. off += 1;
  338. }
  339. }
  340. err = lfs_bd_prog(lfs, pair[1], lfs->block_size-4, 4, &crc);
  341. if (err) {
  342. return err;
  343. }
  344. err = lfs_bd_sync(lfs);
  345. if (err) {
  346. return err;
  347. }
  348. lfs_pairswap(pair);
  349. return 0;
  350. }
  351. // TODO maybe there is a better abstraction for this?
  352. static int lfs_pair_shift(lfs_t *lfs, lfs_block_t pair[2],
  353. int count, const struct lfs_commit_region *regions,
  354. lfs_off_t blank_start, lfs_size_t blank_size) {
  355. uint32_t crc = 0xffffffff;
  356. int err = lfs_bd_erase(lfs, pair[1], 0, lfs->block_size);
  357. if (err) {
  358. return err;
  359. }
  360. lfs_off_t woff = 0;
  361. lfs_off_t roff = 0;
  362. while (woff < lfs->block_size - 4) {
  363. if (count > 0 && regions[0].off == woff) {
  364. crc = lfs_crc(regions[0].data, regions[0].size, crc);
  365. int err = lfs_bd_prog(lfs, pair[1],
  366. woff, regions[0].size, regions[0].data);
  367. if (err) {
  368. return err;
  369. }
  370. woff += regions[0].size;
  371. roff += regions[0].size;
  372. count -= 1;
  373. regions += 1;
  374. } else if (roff == blank_start) {
  375. roff += blank_size;
  376. } else if (roff < lfs->block_size - 4) {
  377. // TODO faster strides?
  378. // TODO should we start crcing what's already
  379. // programmed after dir size?
  380. uint8_t data;
  381. int err = lfs_bd_read(lfs, pair[0], roff, 1, &data);
  382. if (err) {
  383. return err;
  384. }
  385. crc = lfs_crc((void*)&data, 1, crc);
  386. err = lfs_bd_prog(lfs, pair[1], woff, 1, &data);
  387. if (err) {
  388. return err;
  389. }
  390. woff += 1;
  391. roff += 1;
  392. } else {
  393. uint8_t data = 0;
  394. crc = lfs_crc((void*)&data, 1, crc);
  395. err = lfs_bd_prog(lfs, pair[1], woff, 1, &data);
  396. if (err) {
  397. return err;
  398. }
  399. woff += 1;
  400. }
  401. }
  402. err = lfs_bd_prog(lfs, pair[1], lfs->block_size-4, 4, &crc);
  403. if (err) {
  404. return err;
  405. }
  406. err = lfs_bd_sync(lfs);
  407. if (err) {
  408. return err;
  409. }
  410. lfs_pairswap(pair);
  411. return 0;
  412. }
  413. /// Directory operations ///
  414. static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir,
  415. lfs_block_t parent[2], lfs_block_t tail[2]) {
  416. // Allocate pair of dir blocks
  417. for (int i = 0; i < 2; i++) {
  418. int err = lfs_alloc(lfs, &dir->pair[i]);
  419. if (err) {
  420. return err;
  421. }
  422. }
  423. // Rather than clobbering one of the blocks we just pretend
  424. // the revision may be valid
  425. int err = lfs_bd_read(lfs, dir->pair[0], 0, 4, &dir->d.rev);
  426. if (err) {
  427. return err;
  428. }
  429. dir->d.rev += 1;
  430. // Calculate total size
  431. dir->d.size = sizeof(dir->d);
  432. dir->off = sizeof(dir->d);
  433. // Other defaults
  434. dir->d.tail[0] = tail[0];
  435. dir->d.tail[1] = tail[1];
  436. // Write out to memory
  437. if (!parent) {
  438. return lfs_pair_commit(lfs, dir->pair,
  439. 1, (struct lfs_commit_region[]){
  440. {0, sizeof(dir->d), &dir->d}
  441. });
  442. } else {
  443. dir->d.size += 2*sizeof(struct lfs_disk_entry) + 3;
  444. return lfs_pair_commit(lfs, dir->pair,
  445. 5, (struct lfs_commit_region[]){
  446. {0, sizeof(dir->d), &dir->d},
  447. {sizeof(dir->d), sizeof(struct lfs_disk_entry),
  448. &(struct lfs_disk_entry){
  449. .type = LFS_TYPE_DIR,
  450. .len = sizeof(struct lfs_disk_entry)+1,
  451. .u.dir[0] = dir->pair[0],
  452. .u.dir[1] = dir->pair[1],
  453. }},
  454. {sizeof(dir->d)+sizeof(struct lfs_disk_entry), 1, "."},
  455. {sizeof(dir->d)+sizeof(struct lfs_disk_entry)+1,
  456. sizeof(struct lfs_disk_entry),
  457. &(struct lfs_disk_entry){
  458. .type = LFS_TYPE_DIR,
  459. .len = sizeof(struct lfs_disk_entry)+2,
  460. .u.dir[0] = parent[0] ? parent[0] : dir->pair[0],
  461. .u.dir[1] = parent[1] ? parent[1] : dir->pair[1],
  462. }},
  463. {sizeof(dir->d)+2*sizeof(struct lfs_disk_entry)+1, 2, ".."},
  464. });
  465. }
  466. }
  467. static int lfs_dir_fetch(lfs_t *lfs, lfs_dir_t *dir, lfs_block_t pair[2]) {
  468. dir->pair[0] = pair[0];
  469. dir->pair[1] = pair[1];
  470. dir->off = sizeof(dir->d);
  471. return lfs_pair_fetch(lfs, dir->pair,
  472. 1, (struct lfs_fetch_region[1]) {
  473. {0, sizeof(dir->d), &dir->d}
  474. });
  475. }
  476. static int lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) {
  477. while (true) {
  478. if ((0x7fffffff & dir->d.size) - dir->off < sizeof(entry->d)) {
  479. if (!(dir->d.size >> 31)) {
  480. entry->dir[0] = dir->pair[0];
  481. entry->dir[1] = dir->pair[1];
  482. entry->off = dir->off;
  483. return LFS_ERROR_NO_ENTRY;
  484. }
  485. int err = lfs_dir_fetch(lfs, dir, dir->d.tail);
  486. if (err) {
  487. return err;
  488. }
  489. dir->off = sizeof(dir->d);
  490. }
  491. int err = lfs_bd_read(lfs, dir->pair[0], dir->off,
  492. sizeof(entry->d), &entry->d);
  493. if (err) {
  494. return err;
  495. }
  496. dir->off += entry->d.len;
  497. if (entry->d.type == LFS_TYPE_REG || entry->d.type == LFS_TYPE_DIR) {
  498. entry->dir[0] = dir->pair[0];
  499. entry->dir[1] = dir->pair[1];
  500. entry->off = dir->off - entry->d.len;
  501. return 0;
  502. }
  503. }
  504. }
  505. static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir,
  506. const char **path, lfs_entry_t *entry) {
  507. while (true) {
  508. const char *pathname = *path;
  509. lfs_size_t pathlen = strcspn(pathname, "/");
  510. while (true) {
  511. int err = lfs_dir_next(lfs, dir, entry);
  512. if (err) {
  513. return err;
  514. }
  515. if (entry->d.len - sizeof(entry->d) != pathlen) {
  516. continue;
  517. }
  518. int ret = lfs_bd_cmp(lfs, entry->dir[0],
  519. entry->off + sizeof(entry->d), pathlen, pathname);
  520. if (ret < 0) {
  521. return ret;
  522. }
  523. // Found match
  524. if (ret == true) {
  525. break;
  526. }
  527. }
  528. pathname += pathlen;
  529. pathname += strspn(pathname, "/");
  530. if (pathname[0] == '\0') {
  531. return 0;
  532. }
  533. if (entry->d.type != LFS_TYPE_DIR) {
  534. return LFS_ERROR_NOT_DIR;
  535. }
  536. int err = lfs_dir_fetch(lfs, dir, entry->d.u.dir);
  537. if (err) {
  538. return err;
  539. }
  540. *path = pathname;
  541. }
  542. return 0;
  543. }
  544. static int lfs_dir_append(lfs_t *lfs, lfs_dir_t *dir,
  545. const char **path, lfs_entry_t *entry) {
  546. int err = lfs_dir_find(lfs, dir, path, entry);
  547. if (err != LFS_ERROR_NO_ENTRY) {
  548. return err ? err : LFS_ERROR_EXISTS;
  549. }
  550. // Check if we fit
  551. if ((0x7fffffff & dir->d.size) + sizeof(entry->d) + strlen(*path)
  552. > lfs->block_size - 4) {
  553. lfs_dir_t olddir;
  554. memcpy(&olddir, dir, sizeof(olddir));
  555. int err = lfs_dir_alloc(lfs, dir, 0, olddir.d.tail);
  556. if (err) {
  557. return err;
  558. }
  559. entry->dir[0] = dir->pair[0];
  560. entry->dir[1] = dir->pair[1];
  561. entry->off = dir->off;
  562. olddir.d.rev += 1;
  563. olddir.d.size |= 1 << 31;
  564. olddir.d.tail[0] = dir->pair[0];
  565. olddir.d.tail[1] = dir->pair[1];
  566. return lfs_pair_commit(lfs, olddir.pair,
  567. 1, (struct lfs_commit_region[]){
  568. {0, sizeof(olddir.d), &olddir.d}
  569. });
  570. }
  571. return 0;
  572. }
  573. int lfs_mkdir(lfs_t *lfs, const char *path) {
  574. // Allocate entry for directory
  575. lfs_dir_t cwd;
  576. int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd);
  577. if (err) {
  578. return err;
  579. }
  580. lfs_entry_t entry;
  581. err = lfs_dir_append(lfs, &cwd, &path, &entry);
  582. if (err) {
  583. return err;
  584. }
  585. // Build up new directory
  586. lfs_dir_t dir;
  587. err = lfs_dir_alloc(lfs, &dir, cwd.pair, cwd.d.tail);
  588. if (err) {
  589. return err;
  590. }
  591. entry.d.type = LFS_TYPE_DIR;
  592. entry.d.len = sizeof(entry.d) + strlen(path);
  593. entry.d.u.dir[0] = dir.pair[0];
  594. entry.d.u.dir[1] = dir.pair[1];
  595. cwd.d.rev += 1;
  596. cwd.d.size += entry.d.len;
  597. cwd.d.tail[0] = dir.pair[0];
  598. cwd.d.tail[1] = dir.pair[1];
  599. return lfs_pair_commit(lfs, entry.dir,
  600. 3, (struct lfs_commit_region[3]) {
  601. {0, sizeof(cwd.d), &cwd.d},
  602. {entry.off, sizeof(entry.d), &entry.d},
  603. {entry.off+sizeof(entry.d), entry.d.len - sizeof(entry.d), path}
  604. });
  605. }
  606. int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
  607. if (path[0] == '/') {
  608. dir->pair[0] = lfs->root[0];
  609. dir->pair[1] = lfs->root[1];
  610. } else {
  611. dir->pair[0] = lfs->cwd[0];
  612. dir->pair[1] = lfs->cwd[1];
  613. }
  614. int err = lfs_dir_fetch(lfs, dir, dir->pair);
  615. if (err) {
  616. return err;
  617. } else if (strcmp(path, "/") == 0) {
  618. return 0;
  619. }
  620. lfs_entry_t entry;
  621. err = lfs_dir_find(lfs, dir, &path, &entry);
  622. if (err) {
  623. return err;
  624. } else if (entry.d.type != LFS_TYPE_DIR) {
  625. return LFS_ERROR_NOT_DIR;
  626. }
  627. return lfs_dir_fetch(lfs, dir, entry.d.u.dir);
  628. }
  629. int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
  630. // Do nothing, dir is always synchronized
  631. return 0;
  632. }
  633. int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
  634. memset(info, 0, sizeof(*info));
  635. lfs_entry_t entry;
  636. int err = lfs_dir_next(lfs, dir, &entry);
  637. if (err) {
  638. return (err == LFS_ERROR_NO_ENTRY) ? 0 : err;
  639. }
  640. info->type = entry.d.type & 0xff;
  641. if (info->type == LFS_TYPE_REG) {
  642. info->size = entry.d.u.file.size;
  643. }
  644. err = lfs_bd_read(lfs, entry.dir[0], entry.off + sizeof(entry.d),
  645. entry.d.len - sizeof(entry.d), info->name);
  646. if (err) {
  647. return err;
  648. }
  649. return 1;
  650. }
  651. /// File operations ///
  652. int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
  653. const char *path, int flags) {
  654. // Allocate entry for file if it doesn't exist
  655. // TODO check open files
  656. lfs_dir_t cwd;
  657. int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd);
  658. if (err) {
  659. return err;
  660. }
  661. if (flags & LFS_O_CREAT) {
  662. err = lfs_dir_append(lfs, &cwd, &path, &file->entry);
  663. if (err && err != LFS_ERROR_EXISTS) {
  664. return err;
  665. }
  666. } else {
  667. err = lfs_dir_find(lfs, &cwd, &path, &file->entry);
  668. if (err) {
  669. return err;
  670. }
  671. }
  672. if ((flags & LFS_O_CREAT) && err != LFS_ERROR_EXISTS) {
  673. // Store file
  674. file->head = 0;
  675. file->size = 0;
  676. file->wblock = 0;
  677. file->windex = 0;
  678. file->rblock = 0;
  679. file->rindex = 0;
  680. file->roff = 0;
  681. file->entry.d.type = 1;
  682. file->entry.d.len = sizeof(file->entry.d) + strlen(path);
  683. file->entry.d.u.file.head = file->head;
  684. file->entry.d.u.file.size = file->size;
  685. cwd.d.rev += 1;
  686. cwd.d.size += file->entry.d.len;
  687. return lfs_pair_commit(lfs, file->entry.dir,
  688. 3, (struct lfs_commit_region[3]) {
  689. {0, sizeof(cwd.d), &cwd.d},
  690. {file->entry.off,
  691. sizeof(file->entry.d),
  692. &file->entry.d},
  693. {file->entry.off+sizeof(file->entry.d),
  694. file->entry.d.len-sizeof(file->entry.d),
  695. path}
  696. });
  697. } else if (file->entry.d.type == LFS_TYPE_DIR) {
  698. return LFS_ERROR_IS_DIR;
  699. } else {
  700. file->head = file->entry.d.u.file.head;
  701. file->size = file->entry.d.u.file.size;
  702. file->windex = lfs_indexfrom(lfs, file->size);
  703. file->rblock = 0;
  704. file->rindex = 0;
  705. file->roff = 0;
  706. // TODO do this lazily in write?
  707. // TODO cow the head i/d block
  708. if (file->size < lfs->block_size) {
  709. file->wblock = file->head;
  710. } else {
  711. int err = lfs_index_find(lfs, file->head, file->windex,
  712. file->windex, &file->wblock);
  713. if (err) {
  714. return err;
  715. }
  716. }
  717. return 0;
  718. }
  719. }
  720. int lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
  721. // Store file
  722. lfs_dir_t cwd;
  723. int err = lfs_dir_fetch(lfs, &cwd, file->entry.dir);
  724. if (err) {
  725. return err;
  726. }
  727. file->entry.d.u.file.head = file->head;
  728. file->entry.d.u.file.size = file->size;
  729. cwd.d.rev += 1;
  730. return lfs_pair_commit(lfs, file->entry.dir,
  731. 3, (struct lfs_commit_region[3]) {
  732. {0, sizeof(cwd.d), &cwd.d},
  733. {file->entry.off, sizeof(file->entry.d), &file->entry.d},
  734. });
  735. }
  736. lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
  737. const void *buffer, lfs_size_t size) {
  738. const uint8_t *data = buffer;
  739. lfs_size_t nsize = size;
  740. while (nsize > 0) {
  741. lfs_off_t woff = file->size % lfs->block_size;
  742. if (file->size == 0) {
  743. int err = lfs_alloc_erased(lfs, &file->wblock);
  744. if (err) {
  745. return err;
  746. }
  747. file->head = file->wblock;
  748. file->windex = 0;
  749. } else if (woff == 0) {
  750. int err = lfs_alloc_erased(lfs, &file->wblock);
  751. if (err) {
  752. return err;
  753. }
  754. err = lfs_index_append(lfs, &file->head,
  755. &file->windex, file->wblock);
  756. if (err) {
  757. return err;
  758. }
  759. }
  760. lfs_size_t diff = lfs_min(nsize, lfs->block_size - woff);
  761. int err = lfs_bd_prog(lfs, file->wblock, woff, diff, data);
  762. if (err) {
  763. return err;
  764. }
  765. file->size += diff;
  766. data += diff;
  767. nsize -= diff;
  768. }
  769. return size;
  770. }
  771. lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
  772. void *buffer, lfs_size_t size) {
  773. uint8_t *data = buffer;
  774. lfs_size_t nsize = size;
  775. while (nsize > 0 && file->roff < file->size) {
  776. lfs_off_t roff = file->roff % lfs->block_size;
  777. // TODO cache index blocks
  778. if (file->size < lfs->block_size) {
  779. file->rblock = file->head;
  780. } else if (roff == 0) {
  781. int err = lfs_index_find(lfs, file->head, file->windex,
  782. file->rindex, &file->rblock);
  783. if (err) {
  784. return err;
  785. }
  786. file->rindex = lfs_indexnext(lfs, file->rindex);
  787. }
  788. lfs_size_t diff = lfs_min(
  789. lfs_min(nsize, file->size-file->roff),
  790. lfs->block_size - roff);
  791. int err = lfs_bd_read(lfs, file->rblock, roff, diff, data);
  792. if (err) {
  793. return err;
  794. }
  795. file->roff += diff;
  796. data += diff;
  797. nsize -= diff;
  798. }
  799. return size - nsize;
  800. }
  801. /// Generic filesystem operations ///
  802. static int lfs_configure(lfs_t *lfs, const struct lfs_config *config) {
  803. lfs->bd = config->bd;
  804. lfs->bd_ops = config->bd_ops;
  805. struct lfs_bd_info info;
  806. int err = lfs_bd_info(lfs, &info);
  807. if (err) {
  808. return err;
  809. }
  810. if (config->read_size) {
  811. if (config->read_size < info.read_size ||
  812. config->read_size % info.read_size != 0) {
  813. LFS_ERROR("Invalid read size %u, device has %u\n",
  814. config->read_size, info.read_size);
  815. return LFS_ERROR_INVALID;
  816. }
  817. lfs->read_size = config->read_size;
  818. } else {
  819. lfs->read_size = info.read_size;
  820. }
  821. if (config->prog_size) {
  822. if (config->prog_size < info.prog_size ||
  823. config->prog_size % info.prog_size != 0) {
  824. LFS_ERROR("Invalid prog size %u, device has %u\n",
  825. config->prog_size, info.prog_size);
  826. return LFS_ERROR_INVALID;
  827. }
  828. lfs->prog_size = config->prog_size;
  829. } else {
  830. lfs->prog_size = info.prog_size;
  831. }
  832. if (config->block_size) {
  833. if (config->block_size < info.erase_size ||
  834. config->block_size % info.erase_size != 0) {
  835. LFS_ERROR("Invalid block size %u, device has %u\n",
  836. config->prog_size, info.prog_size);
  837. return LFS_ERROR_INVALID;
  838. }
  839. lfs->block_size = config->block_size;
  840. } else {
  841. lfs->block_size = lfs_min(512, info.erase_size);
  842. }
  843. if (config->block_count) {
  844. if (config->block_count > info.total_size/info.erase_size) {
  845. LFS_ERROR("Invalid block size %u, device has %u\n",
  846. config->block_size,
  847. (uint32_t)(info.total_size/info.erase_size));
  848. return LFS_ERROR_INVALID;
  849. }
  850. lfs->block_count = config->block_count;
  851. } else {
  852. lfs->block_count = info.total_size / info.erase_size;
  853. }
  854. lfs->words = lfs->block_size / sizeof(uint32_t);
  855. return 0;
  856. }
  857. int lfs_format(lfs_t *lfs, const struct lfs_config *config) {
  858. int err = lfs_configure(lfs, config);
  859. if (err) {
  860. return err;
  861. }
  862. // Create free list
  863. lfs->free.begin = 2;
  864. lfs->free.end = lfs->block_count-1;
  865. // Write root directory
  866. lfs_dir_t root;
  867. err = lfs_dir_alloc(lfs, &root,
  868. (lfs_block_t[2]){0, 0}, (lfs_block_t[2]){0, 0});
  869. if (err) {
  870. return err;
  871. }
  872. lfs->root[0] = root.pair[0];
  873. lfs->root[1] = root.pair[1];
  874. lfs->cwd[0] = root.pair[0];
  875. lfs->cwd[1] = root.pair[1];
  876. // Write superblocks
  877. lfs_superblock_t superblock = {
  878. .pair = {0, 1},
  879. .d.rev = 1,
  880. .d.size = sizeof(superblock),
  881. .d.root = {lfs->cwd[0], lfs->cwd[1]},
  882. .d.magic = {"littlefs"},
  883. .d.block_size = lfs->block_size,
  884. .d.block_count = lfs->block_count,
  885. };
  886. for (int i = 0; i < 2; i++) {
  887. int err = lfs_pair_commit(lfs, superblock.pair,
  888. 1, (struct lfs_commit_region[]){
  889. {0, sizeof(superblock.d), &superblock.d}
  890. });
  891. if (err) {
  892. LFS_ERROR("Failed to write superblock at %d", superblock.pair[1]);
  893. return err;
  894. }
  895. uint32_t crc = 0xffffffff;
  896. err = lfs_bd_crc(lfs, superblock.pair[0], 0, lfs->block_size, &crc);
  897. if (err || crc != 0) {
  898. LFS_ERROR("Failed to write superblock at %d", superblock.pair[0]);
  899. return err ? err : LFS_ERROR_CORRUPT;
  900. }
  901. }
  902. return 0;
  903. }
  904. int lfs_mount(lfs_t *lfs, const struct lfs_config *config) {
  905. int err = lfs_configure(lfs, config);
  906. if (err) {
  907. return err;
  908. }
  909. lfs_superblock_t superblock = {
  910. .pair = {0, 1},
  911. };
  912. err = lfs_pair_fetch(lfs, superblock.pair,
  913. 1, (struct lfs_fetch_region[]){
  914. {0, sizeof(superblock.d), &superblock.d}
  915. });
  916. if ((err == LFS_ERROR_CORRUPT ||
  917. memcmp(superblock.d.magic, "littlefs", 8) != 0)) {
  918. LFS_ERROR("Invalid superblock at %d %d",
  919. superblock.pair[0], superblock.pair[1]);
  920. return LFS_ERROR_CORRUPT;
  921. }
  922. lfs->root[0] = superblock.d.root[0];
  923. lfs->root[1] = superblock.d.root[1];
  924. lfs->cwd[0] = superblock.d.root[0];
  925. lfs->cwd[1] = superblock.d.root[1];
  926. return err;
  927. }
  928. int lfs_unmount(lfs_t *lfs) {
  929. // Do nothing for now
  930. return 0;
  931. }
  932. static int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) {
  933. // iterate over metadata pairs
  934. lfs_dir_t dir;
  935. lfs_file_t file;
  936. lfs_block_t cwd[2] = {0, 1};
  937. while (true) {
  938. for (int i = 0; i < 2; i++) {
  939. int err = cb(data, cwd[i]);
  940. if (err) {
  941. return err;
  942. }
  943. }
  944. int err = lfs_dir_fetch(lfs, &dir, cwd);
  945. if (err) {
  946. return err;
  947. }
  948. // skip '.' and '..'
  949. dir.off += 2*sizeof(struct lfs_disk_entry) + 3;
  950. // TODO iterate over files
  951. while ((0x7fffffff & dir.d.size) >= dir.off + sizeof(file.entry.d)) {
  952. int err = lfs_bd_read(lfs, dir.pair[0], dir.off,
  953. sizeof(file.entry.d), &file.entry.d);
  954. if (err) {
  955. return err;
  956. }
  957. dir.off += file.entry.d.len;
  958. if ((0xf & file.entry.d.type) == LFS_TYPE_DIR) {
  959. for (int i = 0; i < 2; i++) {
  960. int err = cb(data, file.entry.d.u.dir[i]);
  961. if (err) {
  962. return err;
  963. }
  964. }
  965. } else if ((0xf & file.entry.d.type) == LFS_TYPE_REG) {
  966. if (file.entry.d.u.file.size < lfs->block_size) {
  967. int err = cb(data, file.entry.d.u.file.head);
  968. if (err) {
  969. return err;
  970. }
  971. } else {
  972. int err = lfs_index_traverse(lfs,
  973. file.entry.d.u.file.head,
  974. lfs_indexfrom(lfs, file.entry.d.u.file.size),
  975. cb, data);
  976. if (err) {
  977. return err;
  978. }
  979. }
  980. }
  981. }
  982. cwd[0] = dir.d.tail[0];
  983. cwd[1] = dir.d.tail[1];
  984. if (!cwd[0]) {
  985. return 0;
  986. }
  987. }
  988. }
  989. int lfs_remove(lfs_t *lfs, const char *path) {
  990. lfs_dir_t cwd;
  991. int err = lfs_dir_fetch(lfs, &cwd, lfs->cwd);
  992. if (err) {
  993. return err;
  994. }
  995. lfs_entry_t entry;
  996. err = lfs_dir_find(lfs, &cwd, &path, &entry);
  997. if (err) {
  998. return err;
  999. }
  1000. if (entry.d.type == LFS_TYPE_DIR) {
  1001. // must be empty before removal
  1002. lfs_dir_t dir;
  1003. int err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir);
  1004. if (err) {
  1005. return err;
  1006. } else if (dir.d.size != sizeof(dir.d) +
  1007. 2*sizeof(struct lfs_disk_entry) + 3) {
  1008. return LFS_ERROR_INVALID;
  1009. }
  1010. // remove ourselves from the dir list
  1011. lfs_dir_t pdir;
  1012. memcpy(&pdir, &cwd, sizeof(pdir));
  1013. while (pdir.d.tail[0]) {
  1014. if (lfs_paircmp(pdir.d.tail, entry.d.u.dir) == 0) {
  1015. pdir.d.tail[0] = dir.d.tail[0];
  1016. pdir.d.tail[1] = dir.d.tail[1];
  1017. pdir.d.rev += 1;
  1018. int err = lfs_pair_commit(lfs, pdir.pair,
  1019. 1, (struct lfs_commit_region[]) {
  1020. {0, sizeof(pdir.d), &pdir.d},
  1021. });
  1022. if (err) {
  1023. return err;
  1024. }
  1025. break;
  1026. }
  1027. int err = lfs_dir_fetch(lfs, &pdir, pdir.d.tail);
  1028. if (err) {
  1029. return err;
  1030. }
  1031. }
  1032. }
  1033. cwd.d.rev += 1;
  1034. cwd.d.size -= entry.d.len;
  1035. // TODO remove dir block?
  1036. // Drop contents on the floor
  1037. return lfs_pair_shift(lfs, entry.dir,
  1038. 1, (struct lfs_commit_region[]) {
  1039. {0, sizeof(cwd.d), &cwd.d},
  1040. },
  1041. entry.off, entry.d.len);
  1042. }