#pragma once // MESSAGE ORBIT_EXECUTION_STATUS PACKING #define MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS 360 typedef struct __mavlink_orbit_execution_status_t { uint64_t time_usec; /*< [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.*/ float radius; /*< [m] Radius of the orbit circle. Positive values orbit clockwise, negative values orbit counter-clockwise.*/ int32_t x; /*< X coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7.*/ int32_t y; /*< Y coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7.*/ float z; /*< [m] Altitude of center point. Coordinate system depends on frame field.*/ uint8_t frame; /*< The coordinate system of the fields: x, y, z.*/ } mavlink_orbit_execution_status_t; #define MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN 25 #define MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_MIN_LEN 25 #define MAVLINK_MSG_ID_360_LEN 25 #define MAVLINK_MSG_ID_360_MIN_LEN 25 #define MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_CRC 11 #define MAVLINK_MSG_ID_360_CRC 11 #if MAVLINK_COMMAND_24BIT #define MAVLINK_MESSAGE_INFO_ORBIT_EXECUTION_STATUS { \ 360, \ "ORBIT_EXECUTION_STATUS", \ 6, \ { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_orbit_execution_status_t, time_usec) }, \ { "radius", NULL, MAVLINK_TYPE_FLOAT, 0, 8, offsetof(mavlink_orbit_execution_status_t, radius) }, \ { "frame", NULL, MAVLINK_TYPE_UINT8_T, 0, 24, offsetof(mavlink_orbit_execution_status_t, frame) }, \ { "x", NULL, MAVLINK_TYPE_INT32_T, 0, 12, offsetof(mavlink_orbit_execution_status_t, x) }, \ { "y", NULL, MAVLINK_TYPE_INT32_T, 0, 16, offsetof(mavlink_orbit_execution_status_t, y) }, \ { "z", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_orbit_execution_status_t, z) }, \ } \ } #else #define MAVLINK_MESSAGE_INFO_ORBIT_EXECUTION_STATUS { \ "ORBIT_EXECUTION_STATUS", \ 6, \ { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_orbit_execution_status_t, time_usec) }, \ { "radius", NULL, MAVLINK_TYPE_FLOAT, 0, 8, offsetof(mavlink_orbit_execution_status_t, radius) }, \ { "frame", NULL, MAVLINK_TYPE_UINT8_T, 0, 24, offsetof(mavlink_orbit_execution_status_t, frame) }, \ { "x", NULL, MAVLINK_TYPE_INT32_T, 0, 12, offsetof(mavlink_orbit_execution_status_t, x) }, \ { "y", NULL, MAVLINK_TYPE_INT32_T, 0, 16, offsetof(mavlink_orbit_execution_status_t, y) }, \ { "z", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_orbit_execution_status_t, z) }, \ } \ } #endif /** * @brief Pack a orbit_execution_status message * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param msg The MAVLink message to compress the data into * * @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number. * @param radius [m] Radius of the orbit circle. Positive values orbit clockwise, negative values orbit counter-clockwise. * @param frame The coordinate system of the fields: x, y, z. * @param x X coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7. * @param y Y coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7. * @param z [m] Altitude of center point. Coordinate system depends on frame field. * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_orbit_execution_status_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, uint64_t time_usec, float radius, uint8_t frame, int32_t x, int32_t y, float z) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_float(buf, 8, radius); _mav_put_int32_t(buf, 12, x); _mav_put_int32_t(buf, 16, y); _mav_put_float(buf, 20, z); _mav_put_uint8_t(buf, 24, frame); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN); #else mavlink_orbit_execution_status_t packet; packet.time_usec = time_usec; packet.radius = radius; packet.x = x; packet.y = y; packet.z = z; packet.frame = frame; memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN); #endif msg->msgid = MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS; return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_MIN_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_CRC); } /** * @brief Pack a orbit_execution_status message * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param status MAVLink status structure * @param msg The MAVLink message to compress the data into * * @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number. * @param radius [m] Radius of the orbit circle. Positive values orbit clockwise, negative values orbit counter-clockwise. * @param frame The coordinate system of the fields: x, y, z. * @param x X coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7. * @param y Y coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7. * @param z [m] Altitude of center point. Coordinate system depends on frame field. * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_orbit_execution_status_pack_status(uint8_t system_id, uint8_t component_id, mavlink_status_t *_status, mavlink_message_t* msg, uint64_t time_usec, float radius, uint8_t frame, int32_t x, int32_t y, float z) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_float(buf, 8, radius); _mav_put_int32_t(buf, 12, x); _mav_put_int32_t(buf, 16, y); _mav_put_float(buf, 20, z); _mav_put_uint8_t(buf, 24, frame); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN); #else mavlink_orbit_execution_status_t packet; packet.time_usec = time_usec; packet.radius = radius; packet.x = x; packet.y = y; packet.z = z; packet.frame = frame; memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN); #endif msg->msgid = MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS; #if MAVLINK_CRC_EXTRA return mavlink_finalize_message_buffer(msg, system_id, component_id, _status, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_MIN_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_CRC); #else return mavlink_finalize_message_buffer(msg, system_id, component_id, _status, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_MIN_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN); #endif } /** * @brief Pack a orbit_execution_status message on a channel * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param chan The MAVLink channel this message will be sent over * @param msg The MAVLink message to compress the data into * @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number. * @param radius [m] Radius of the orbit circle. Positive values orbit clockwise, negative values orbit counter-clockwise. * @param frame The coordinate system of the fields: x, y, z. * @param x X coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7. * @param y Y coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7. * @param z [m] Altitude of center point. Coordinate system depends on frame field. * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_orbit_execution_status_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, uint64_t time_usec,float radius,uint8_t frame,int32_t x,int32_t y,float z) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_float(buf, 8, radius); _mav_put_int32_t(buf, 12, x); _mav_put_int32_t(buf, 16, y); _mav_put_float(buf, 20, z); _mav_put_uint8_t(buf, 24, frame); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN); #else mavlink_orbit_execution_status_t packet; packet.time_usec = time_usec; packet.radius = radius; packet.x = x; packet.y = y; packet.z = z; packet.frame = frame; memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN); #endif msg->msgid = MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS; return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_MIN_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_CRC); } /** * @brief Encode a orbit_execution_status struct * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param msg The MAVLink message to compress the data into * @param orbit_execution_status C-struct to read the message contents from */ static inline uint16_t mavlink_msg_orbit_execution_status_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_orbit_execution_status_t* orbit_execution_status) { return mavlink_msg_orbit_execution_status_pack(system_id, component_id, msg, orbit_execution_status->time_usec, orbit_execution_status->radius, orbit_execution_status->frame, orbit_execution_status->x, orbit_execution_status->y, orbit_execution_status->z); } /** * @brief Encode a orbit_execution_status struct on a channel * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param chan The MAVLink channel this message will be sent over * @param msg The MAVLink message to compress the data into * @param orbit_execution_status C-struct to read the message contents from */ static inline uint16_t mavlink_msg_orbit_execution_status_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_orbit_execution_status_t* orbit_execution_status) { return mavlink_msg_orbit_execution_status_pack_chan(system_id, component_id, chan, msg, orbit_execution_status->time_usec, orbit_execution_status->radius, orbit_execution_status->frame, orbit_execution_status->x, orbit_execution_status->y, orbit_execution_status->z); } /** * @brief Encode a orbit_execution_status struct with provided status structure * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param status MAVLink status structure * @param msg The MAVLink message to compress the data into * @param orbit_execution_status C-struct to read the message contents from */ static inline uint16_t mavlink_msg_orbit_execution_status_encode_status(uint8_t system_id, uint8_t component_id, mavlink_status_t* _status, mavlink_message_t* msg, const mavlink_orbit_execution_status_t* orbit_execution_status) { return mavlink_msg_orbit_execution_status_pack_status(system_id, component_id, _status, msg, orbit_execution_status->time_usec, orbit_execution_status->radius, orbit_execution_status->frame, orbit_execution_status->x, orbit_execution_status->y, orbit_execution_status->z); } /** * @brief Send a orbit_execution_status message * @param chan MAVLink channel to send the message * * @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number. * @param radius [m] Radius of the orbit circle. Positive values orbit clockwise, negative values orbit counter-clockwise. * @param frame The coordinate system of the fields: x, y, z. * @param x X coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7. * @param y Y coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7. * @param z [m] Altitude of center point. Coordinate system depends on frame field. */ #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS static inline void mavlink_msg_orbit_execution_status_send(mavlink_channel_t chan, uint64_t time_usec, float radius, uint8_t frame, int32_t x, int32_t y, float z) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_float(buf, 8, radius); _mav_put_int32_t(buf, 12, x); _mav_put_int32_t(buf, 16, y); _mav_put_float(buf, 20, z); _mav_put_uint8_t(buf, 24, frame); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS, buf, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_MIN_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_CRC); #else mavlink_orbit_execution_status_t packet; packet.time_usec = time_usec; packet.radius = radius; packet.x = x; packet.y = y; packet.z = z; packet.frame = frame; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS, (const char *)&packet, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_MIN_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_CRC); #endif } /** * @brief Send a orbit_execution_status message * @param chan MAVLink channel to send the message * @param struct The MAVLink struct to serialize */ static inline void mavlink_msg_orbit_execution_status_send_struct(mavlink_channel_t chan, const mavlink_orbit_execution_status_t* orbit_execution_status) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS mavlink_msg_orbit_execution_status_send(chan, orbit_execution_status->time_usec, orbit_execution_status->radius, orbit_execution_status->frame, orbit_execution_status->x, orbit_execution_status->y, orbit_execution_status->z); #else _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS, (const char *)orbit_execution_status, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_MIN_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_CRC); #endif } #if MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN <= MAVLINK_MAX_PAYLOAD_LEN /* This variant of _send() can be used to save stack space by re-using memory from the receive buffer. The caller provides a mavlink_message_t which is the size of a full mavlink message. This is usually the receive buffer for the channel, and allows a reply to an incoming message with minimum stack space usage. */ static inline void mavlink_msg_orbit_execution_status_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, float radius, uint8_t frame, int32_t x, int32_t y, float z) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char *buf = (char *)msgbuf; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_float(buf, 8, radius); _mav_put_int32_t(buf, 12, x); _mav_put_int32_t(buf, 16, y); _mav_put_float(buf, 20, z); _mav_put_uint8_t(buf, 24, frame); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS, buf, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_MIN_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_CRC); #else mavlink_orbit_execution_status_t *packet = (mavlink_orbit_execution_status_t *)msgbuf; packet->time_usec = time_usec; packet->radius = radius; packet->x = x; packet->y = y; packet->z = z; packet->frame = frame; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS, (const char *)packet, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_MIN_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_CRC); #endif } #endif #endif // MESSAGE ORBIT_EXECUTION_STATUS UNPACKING /** * @brief Get field time_usec from orbit_execution_status message * * @return [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number. */ static inline uint64_t mavlink_msg_orbit_execution_status_get_time_usec(const mavlink_message_t* msg) { return _MAV_RETURN_uint64_t(msg, 0); } /** * @brief Get field radius from orbit_execution_status message * * @return [m] Radius of the orbit circle. Positive values orbit clockwise, negative values orbit counter-clockwise. */ static inline float mavlink_msg_orbit_execution_status_get_radius(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 8); } /** * @brief Get field frame from orbit_execution_status message * * @return The coordinate system of the fields: x, y, z. */ static inline uint8_t mavlink_msg_orbit_execution_status_get_frame(const mavlink_message_t* msg) { return _MAV_RETURN_uint8_t(msg, 24); } /** * @brief Get field x from orbit_execution_status message * * @return X coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7. */ static inline int32_t mavlink_msg_orbit_execution_status_get_x(const mavlink_message_t* msg) { return _MAV_RETURN_int32_t(msg, 12); } /** * @brief Get field y from orbit_execution_status message * * @return Y coordinate of center point. Coordinate system depends on frame field: local = x position in meters * 1e4, global = latitude in degrees * 1e7. */ static inline int32_t mavlink_msg_orbit_execution_status_get_y(const mavlink_message_t* msg) { return _MAV_RETURN_int32_t(msg, 16); } /** * @brief Get field z from orbit_execution_status message * * @return [m] Altitude of center point. Coordinate system depends on frame field. */ static inline float mavlink_msg_orbit_execution_status_get_z(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 20); } /** * @brief Decode a orbit_execution_status message into a struct * * @param msg The message to decode * @param orbit_execution_status C-struct to decode the message contents into */ static inline void mavlink_msg_orbit_execution_status_decode(const mavlink_message_t* msg, mavlink_orbit_execution_status_t* orbit_execution_status) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS orbit_execution_status->time_usec = mavlink_msg_orbit_execution_status_get_time_usec(msg); orbit_execution_status->radius = mavlink_msg_orbit_execution_status_get_radius(msg); orbit_execution_status->x = mavlink_msg_orbit_execution_status_get_x(msg); orbit_execution_status->y = mavlink_msg_orbit_execution_status_get_y(msg); orbit_execution_status->z = mavlink_msg_orbit_execution_status_get_z(msg); orbit_execution_status->frame = mavlink_msg_orbit_execution_status_get_frame(msg); #else uint8_t len = msg->len < MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN? msg->len : MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN; memset(orbit_execution_status, 0, MAVLINK_MSG_ID_ORBIT_EXECUTION_STATUS_LEN); memcpy(orbit_execution_status, _MAV_PAYLOAD(msg), len); #endif }