1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075 |
- /*
- * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /* ----------------------------------------------------------------------
- * Project: CMSIS NN Library
- * Title: arm_nnfunctions.h
- * Description: Public header file for CMSIS NN Library
- *
- * $Date: 13. July 2018
- * $Revision: V.1.0.0
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /**
- \mainpage CMSIS NN Software Library
- *
- * Introduction
- * ------------
- *
- * This user manual describes the CMSIS NN software library,
- * a collection of efficient neural network kernels developed to maximize the
- * performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
- *
- * The library is divided into a number of functions each covering a specific category:
- * - Neural Network Convolution Functions
- * - Neural Network Activation Functions
- * - Fully-connected Layer Functions
- * - Neural Network Pooling Functions
- * - Softmax Functions
- * - Neural Network Support Functions
- *
- * The library has separate functions for operating on different weight and activation data
- * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
- * kernels are included in the function description. The implementation details are also
- * described in this paper [1].
- *
- * Block Diagram
- * --------
- * \image html CMSIS-NN-OVERVIEW.PNG
- *
- * Examples
- * --------
- *
- * The library ships with a number of examples which demonstrate how to use the library functions.
- *
- * Pre-processor Macros
- * ------------
- *
- * Each library project have differant pre-processor macros.
- *
- * - ARM_MATH_DSP:
- *
- * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions.
- *
- * - ARM_MATH_BIG_ENDIAN:
- *
- * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
- *
- * - ARM_NN_TRUNCATE:
- *
- * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
- *
- * Copyright Notice
- * ------------
- *
- * Copyright (C) 2010-2018 Arm Limited. All rights reserved.
- *
- * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
- */
- /**
- * @defgroup groupNN Neural Network Functions
- * These functions perform basic operations for neural network layers.
- */
- #ifndef _ARM_NNFUNCTIONS_H
- #define _ARM_NNFUNCTIONS_H
- #include "arm_nnsupportfunctions.h"
- #include "arm_nn_tables.h"
- #define USE_INTRINSIC
- //#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
- #ifdef __cplusplus
- extern "C"
- {
- #endif
- /**
- * @defgroup NNConv Neural Network Convolution Functions
- *
- * Perform convolution layer
- *
- * The convolution is implemented in 2 steps: im2col and GEMM
- *
- * im2col is a process of converting each patch of image data into
- * a column. After im2col, the convolution is computed as matrix-matrix
- * multiplication.
- *
- * To reduce the memory footprint, the im2col is performed partially.
- * Each iteration, only a few column (i.e., patches) are generated and
- * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
- *
- */
- /**
- * @brief Basic Q7 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimention
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t * Im_out,
- const uint16_t dim_im_out,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @brief Basic Q7 convolution function (non-sqaure shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimention x
- * @param[in] dim_im_in_y input tensor dimention y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- */
- arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t * Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @brief Basic Q15 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimention
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q15_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q15_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q15_t * Im_out,
- const uint16_t dim_im_out,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @brief Fast Q7 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimention
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 4
- * ch_im_out is multiple of 2
- */
- arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t * Im_out,
- const uint16_t dim_im_out,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @brief Fast Q7 convolution function (non-sqaure shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimention x
- * @param[in] dim_im_in_y input tensor dimention y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 4
- * ch_im_out is multiple of 2
- */
- arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t * Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimention x
- * @param[in] dim_im_in_y input tensor dimention y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
- * and dim_kernel_y=1). It can be used for
- * second half of MobileNets after depthwise separable convolution.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 4
- * ch_im_out is multiple of 2
- */
- arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t * Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @brief Q7 version of convolution for RGB image
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimention
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This kernel is written exclusively for convolution with ch_im_in
- * equals 3. This applies on the first layer of CNNs which has input
- * image with RGB format.
- */
- arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t * Im_out,
- const uint16_t dim_im_out,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @brief Fast Q15 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimention
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 2
- * ch_im_out is multiple of 2
- */
- arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q15_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q15_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q15_t * Im_out,
- const uint16_t dim_im_out,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @brief Fast Q15 convolution function (non-sqaure shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimention x
- * @param[in] dim_im_in_y input tensor dimention y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * @details
- *
- * <b>Buffer size:</b>
- *
- * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
- *
- * bufferB size: 0
- *
- * <b>Input dimension constraints:</b>
- *
- * ch_im_in is multiple of 2
- *
- * ch_im_out is multipe of 2
- *
- */
- arm_status
- arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q15_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q15_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q15_t * Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @brief Q7 depthwise separable convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimention
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 2
- * ch_im_out is multiple of 2
- */
- arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t * Im_out,
- const uint16_t dim_im_out,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @brief Q7 depthwise separable convolution function (non-square shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimention x
- * @param[in] dim_im_in_y input tensor dimention y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding sizes x
- * @param[in] padding_y padding sizes y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 2
- * ch_im_out is multiple of 2
- */
- arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t * wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t * bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t * Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t * bufferA,
- q7_t * bufferB);
- /**
- * @defgroup FC Fully-connected Layer Functions
- *
- * Perform fully-connected layer
- *
- * Fully-connected layer is basically a matrix-vector multiplication
- * with bias. The matrix is the weights and the input/output vectors
- * are the activation values. Supported {weight, activation} precisions
- * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
- *
- * Here we have two types of kernel functions. The basic function
- * implements the function using regular GEMV approach. The opt functions
- * operates with weights in interleaved formats.
- *
- */
- /**
- * @brief Q7 basic fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_q7(const q7_t * pV,
- const q7_t * pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t * bias,
- q7_t * pOut,
- q15_t * vec_buffer);
- /**
- * @brief Q7 opt fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_q7_opt(const q7_t * pV,
- const q7_t * pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t * bias,
- q7_t * pOut,
- q15_t * vec_buffer);
- /**
- * @brief Q15 basic fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_q15(const q15_t * pV,
- const q15_t * pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q15_t * bias,
- q15_t * pOut,
- q15_t * vec_buffer);
- /**
- * @brief Q15 opt fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_q15_opt(const q15_t * pV,
- const q15_t * pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q15_t * bias,
- q15_t * pOut,
- q15_t * vec_buffer);
- /**
- * @brief Mixed Q15-Q7 fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV,
- const q7_t * pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t * bias,
- q15_t * pOut,
- q15_t * vec_buffer);
- /**
- * @brief Mixed Q15-Q7 opt fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
- arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV,
- const q7_t * pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t * bias,
- q15_t * pOut,
- q15_t * vec_buffer);
- /**
- * @brief Matrix-Multiplication Kernels for Convolution
- *
- * These functions are used within convolution layer functions for
- * matrix multiplication.
- *
- * The implementation is similar to CMSIS-DSP arm_mat_mult functions
- * with one Q7 and one Q15 operands. The Q15 operand is the im2col
- * output which is always with 2 columns.
- *
- */
- /**
- * @brief Matrix-multiplication function for convolution
- * @param[in] pA pointer to operand A
- * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
- * @param[in] ch_im_out numRow of A
- * @param[in] numCol_A numCol of A
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias the bias
- * @param[in,out] pOut pointer to output
- * @return The function returns the incremented output pointer
- */
- q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
- const q15_t * pInBuffer,
- const uint16_t ch_im_out,
- const uint16_t numCol_A,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t * bias,
- q7_t * pOut);
- /**
- * @brief Matrix-multiplication function for convolution with reordered columns
- * @param[in] pA pointer to operand A
- * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
- * @param[in] ch_im_out numRow of A
- * @param[in] numCol_A numCol of A
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias the bias
- * @param[in,out] pOut pointer to output
- * @return The function returns the incremented output pointer
- */
- q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
- const q15_t * pInBuffer,
- const uint16_t ch_im_out,
- const uint16_t numCol_A,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t * bias,
- q7_t * pOut);
- #ifdef __cplusplus
- }
- #endif
- /*
- * Other functions
- * These layers are typically not timing critical
- * Basic implementation is supported here
- */
- #ifdef __cplusplus
- extern "C"
- {
- #endif
- /**
- * @defgroup Acti Neural Network Activation Functions
- *
- * Perform activation layers, including ReLU (Rectified Linear Unit),
- * sigmoid and tanh
- *
- */
- /**
- * @brief Q7 RELU function
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @return none.
- */
- void arm_relu_q7(q7_t * data, uint16_t size);
- /**
- * @brief Q15 RELU function
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @return none.
- */
- void arm_relu_q15(q15_t * data, uint16_t size);
- /**
- * @brief Q7 neural network activation function using direct table look-up
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
- * @param[in] type type of activation functions
- * @return none.
- */
- void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width,
- arm_nn_activation_type type);
- /**
- * @brief Q15 neural network activation function using direct table look-up
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
- * @param[in] type type of activation functions
- * @return none.
- */
- void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width,
- arm_nn_activation_type type);
- /**
- * @defgroup Pooling Neural Network Pooling Functions
- *
- * Perform pooling functions, including max pooling and average pooling
- *
- */
- /**
- * @brief Q7 max pooling function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimention
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] Im_out pointer to output tensor
- * @return none.
- *
- */
- void arm_maxpool_q7_HWC(q7_t * Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const uint16_t dim_im_out,
- q7_t * bufferA,
- q7_t * Im_out);
- /**
- * @brief Q7 average pooling function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimention
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] Im_out pointer to output tensor
- * @return none.
- *
- */
- void arm_avepool_q7_HWC(q7_t * Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const uint16_t dim_im_out,
- q7_t * bufferA,
- q7_t * Im_out);
- /**
- * @defgroup Softmax Softmax Functions
- *
- * EXP(2) based softmax function
- *
- */
- /**
- * @brief Q7 softmax function
- * @param[in] vec_in pointer to input vector
- * @param[in] dim_vec input vector dimention
- * @param[out] p_out pointer to output vector
- * @return none.
- *
- */
- void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out);
- /**
- * @brief Q15 softmax function
- * @param[in] vec_in pointer to input vector
- * @param[in] dim_vec input vector dimention
- * @param[out] p_out pointer to output vector
- * @return none.
- *
- */
- void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out);
- /**
- * @brief uint8 depthwise convolution function with asymmetric quantization for even number of channel multiplier
- * and input channels. Unless specified otherwise, arguments are mandatory.
- *
- * @param[in] input Pointer to input tensor
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_ch Channels in input tensor
- * @param[in] kernel Pointer to kernel weights
- * @param[in] kernel_x Width of kernel
- * @param[in] kernel_y Height of kernel
- * @param[in] ch_mult Number of channel multiplier
- * @param[in] pad_x Padding sizes x
- * @param[in] pad_y Padding sizes y
- * @param[in] stride_x Convolution stride along the width
- * @param[in] stride_y Convolution stride along the height
- * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
- * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
- * @param[in] bias Pointer to optional bias values. If no bias is
- * availble, NULL is expected
- * @param[in] input_offset Input tensor zero offset
- * @param[in] filter_offset Kernel tensor zero offset
- * @param[in] output_offset Output tensor zero offset
- * @param[in,out] output Pointer to output tensor
- * @param[in] output_x Width of output tensor
- * @param[in] output_y Height of output tensor
- * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
- * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
- * @param[in] out_shift Amount of right-shift for output
- * @param[in] out_mult Output multiplier for requantization
- * @return The function returns one of the following
- * <code>ARM_MATH_SIZE_MISMATCH</code> - Not supported dimension of tensors
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- * <code>ARM_MATH_ARGUMENT_ERROR</code> - Implementation not available
- *
- * <b> Input constraints</b>
- * ch_mult is multiple of 2
- * kernel_x is multiple of 2
- *
- */
- arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_ch,
- const uint8_t *kernel,
- const uint16_t kernel_x,
- const uint16_t kernel_y,
- const int16_t ch_mult,
- const int16_t pad_x,
- const int16_t pad_y,
- const int16_t stride_x,
- const int16_t stride_y,
- const int16_t dilation_x,
- const int16_t dilation_y,
- const int32_t *bias,
- const int32_t input_offset,
- const int32_t filter_offset,
- const int32_t output_offset,
- uint8_t *output,
- const uint16_t output_x,
- const uint16_t output_y,
- const int32_t output_activation_min,
- const int32_t output_activation_max,
- const int32_t out_shift,
- const int32_t out_mult);
- #ifdef __cplusplus
- }
- #endif
- #endif
|